Course in Bayesian Optimization

Javier Gonzalez

University of Sheffield, Sheffield, UK

28th October 2015



Recap

Yesterday we discussed:

v

ML as optimization and ML as probabilistic modeling.

\4

In the second case we also need to ‘optimize parameters’

v

Probability theory provides a mathematical framework to
deal with uncertainty.

v

Gaussian processes are a fundamental way to model
uncertainty.

Parameter optimization is crucial in any framework



Today’s agenda

» In what cases we can make an explicit use of the epistemic
uncertainty to make decisions?

» Global optimization, different strategies.

» Probabilistic models to solve global optimization problems.

Parameter optimization is crucial in any ML framework



Goal of the day

“Civilization advances by extending the
number of important operations which

we can perform without thinking of them.”
(Alfred North Whitehead)

To make ML completely automatic.



Goal of the day

[Hoffman, Shahriari and de Freitas, 2013]
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Kappenball: using the uncertainty to make optimal
decisions.

Awerage: 0

Making optimal choices using epistemic uncertainty.



Global optimization

Consider a ‘well behaved’ function f : X — R where X € R is
a compact set.

xp = arg min f(x).
xeX




Global optimization

Consider a ‘well behaved” function f : X — R where X C RP is
a compact set.

xp = arg min f(x).
xeX

» fis explicitly unknown and multimodal.
» Evaluations of f may be perturbed.

» Evaluations of f are expensive.



What to do?

Option 1: Previous knowledge

To use what we know about the problem. To select the
parameters at hand.

Perhaps not very scientific but still in use.



What to do?

Option 2: Grid search?

If f is L-Lipschitz continuous and we are in a noise-free domain
to guarantee that we propose some xu;,, such that

fOam) = fxmn) < €
we need to evaluate f on a D-dimensional unit hypercube:
(L/e)Pevaluations!

Example: (10/0.01)° = 10¢14...
... but function evaluations are very expensive!



What to do?

Option 3: Random search?

We can sample the space uniformly [Bergstra and Bengio 2012]

Grid Layout Random Layout

Unimportant parameter
Unimportant parameter

Important parameter Important parameter

Better than grid search in various senses but still expensive to
guarantee good coverage.



What to do?

Key question:

Can we do better?



Regret minimization

The goal is to make a series of xy, ..., xy evaluations of f such
that the cumulative regret

N

=Y fen) = Nf )

n=1

is minimized. Essentially, ry is minimized if we start evaluating
f at xpr as soon as possible.



Expensive functions, who doesn’t have one?

Parameter tuning in ML algorithms.

Diagonal

» Number of layers/units per layer
» Weight penalties

» Learning rates, etc.

Figure source: http://theanalyticsstore.com/deep-learning



Expensive functions, who doesn’t have one?

Tuning websites with A/B testing

Optimize the web design to maximize sign-ups, downloads,
purchases, etc.



Expensive functions, who doesn’t have one?

Active Path Finding in Middle Level

Optimise the location of a sequence of waypoints in a map to
navigate from a location to a destination.



Expensive functions, who doesn’t have one?

Synthetic gene design: Use mammalian cells to make protein
products.

Optimize genes (ATTGGTUGA...) to best enable the
cell-factory to operate most efficiently.



Expensive functions, who doesn’t have one?

Many other problems:

» Robotics, control, reinforcement learning.
» Scheduling, planning

» compilers, hardware, software?



Typical situation

We have a few function evaluations
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Where is the minimum of £?
Where should the take the next evaluation?



Intuitive solution

One curve

15

) 0.4 0.6, .
Histogram over the minimum

0.0

0.2 0.4 0.6 0.8 1.0



Intuitive solution

Three curves
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Intuitive solution

Ten curves
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Intuitive solution

Hundred curves
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Histogram over the minimum




Intuitive solution

Many curves

) 0.4 0.6, .
Histogram over the minimum




Intuitive solution

Infinite curves
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What just happened?

» We made some prior assumptions about our function.

» Information about the minimum is now encoded in a new
function (the probability distribution pmin in this case).

» We can use pmin (or a functional of it: entropy search) to
decide where to sample next.

» Other functions to encode relevant information about the
minimum are possible, e. g. the ‘marginal expected gain’
at each location.



Bayesian Optimization

Methodology to perform global optimization of multimodal
black-box functions [Mockus, 1978].

1. Choose some prior measure over the space of possible
objectives f.

2. Combine prior and the likelihood to get a posterior over the
objective given some observations.

3. Use the posterior to decide where to take the next
evaluation according to some acquisition function.

4. Augment the data.

Iterate between 2 and 4 until the evaluation budget is over.



Probability measure over functions

Default Choice: Gaussian processes

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.

Prior Posterior

» Model f(x) ~ GP(u(x), k(x,x")) is determined by the mean
function m(x) and covariance function k(x, x’; 0).

» Posterior mean p(x; 0, D) and variance o(x; 0, D) can be
computed explicitly given a dataset D.



Other models are also possible: Random Forrest
[Criminisi et al, 2011]
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Other models are also possible: t-Student processes

Student-t Processes as Alternatives to Gaussian Processes

Amar Shah Andrew Gordon Wilson Zoubin Ghahramani
University of Cambridge University of Cambridge University of Cambridge
Abstract simple exact learning and inference procedures, and

impressive empirical performances [Rasmussen, 1996],
Gaussian processes as kernel machines have steadily

‘We investigate the Student-f process as an grown in popularity over the last decade.

alternative to the Gaussian process as a non-

parametric prior over functions. We de- At the heart of every Gaussian process (GP) is
rive closed form expressions for the marginal a parametrized covariance kernel, which determines
likelihood and predictive distribution of a the properties of likely functions under a GP. Typ-

Student-t process, by integrating away an ically simple parametric kernels, such as the Gaus-



Acquisition functions

Making use of the model uncertainty

Here we will use Gaussian processes. GPs has marginal
closed-form for the posterior mean p(x) and variance o(x).

» Exploration: Evaluate in places where the variance is
large.

» Exploitation: Evaluate in places where the mean is low.

Acquisition functions balance these two factors to determine
where to evaluate next.



Exploration vs. exploitation
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Bayesian optimization explains human active search

[Borji and Itti, 2013]



Exploration vs. exploitation
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GP Upper (lower) Confidence Band

[Srinivas et al., 2010]
Direct balance between exploration and exploitation:

arcp(x; 0, D) = —u(x; 0, D) + Bio(x; 0, D)
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GP Upper (lower) Confidence Band

[Srinivas et al., 2010]

» In noiseless cases, it is a lower bound of the function to
minimize.

» This allows to computer a bound on how close we are to
the minimum.

» Optimal choices available for the ‘regularization
parameter’.

Theorem 1 Let 4§ S (0,1) and j5 =
2log(|D|t272/68). Running GP-UCB with 5, for
a sample f of a GP with mean function zero and
covariance function k(x, @), we obtain a regret bound
of O*(y/T~rlog|D|) with high probability. Precisely,
with Cy = 8/log(1 + o~ 2) we have

Pr {R-;- < /CiTBryr VT > 1} 3 O}



Expected Improvement
[Jones et al., 1998]

agi(x; 0, D) = f max(0, Ypest — V)P(ylx; 6, D)dy
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Expected Improvement
[Jones et al., 1998]

» Perhaps the most used acquisition.
» Explicit for available for Gaussian posteriors.

» Itis too greedy in some problems. It is possible to make
more explorative adding a ‘explorative’ parameter

ap(x; 0, D) = o(x; 0, D)(y()P(y(x))) + N(y(x);0,1).

where

— f(Xpest) — u(x; 0, D) + 4)

Y o(x;0,D)



Maximum Probability of Improvement
[Hushner, 1964]

Y = a(x; 0, D) (1 6, D) ~ Yest)
ampi(x; 0, D) = p(f(X) < Ypest) = P(y(x))

f(x)
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Maximum Probability of Improvement
[Hushner, 1964]

» First used acquisition: very intuitive.
» Less used in practice.

» Explicit for available for Gaussian posteriors.

ampi(x; 0, D) = O(y(x))).
where
_ f(xbest) - H(X; 6/ Z)) + 1/)

Y a(x; 6,D)




Thomson sampling
Probability matching

arHoMsoN(X; 0, D) = g(x)
g(x) is sampled form GP(u(x), k(x, x"))

15




Thomson sampling
Probability matching [Rahimi and B. Recht, 2007]

» It is easy to generate posterior samples of a GP at a finite
set of locations.

» More difficult is to generate ‘continuous’ samples.

Possible using the Bochner’s lemma: existence of the Fourier
dual of k, s(w) which is equal to the spectral density of k

k(x,x") = vEE, [e—in(x—x')] =2vE, [cos(a)xT + b) cos(wx” + b)]

With sampling and this lemma (taking p(w) = s(w)/v and
b ~ U0, 2mt]) we can construct a feature based approximation
for sample paths of the GP.

m
v i Ty i (T

k(x,x') ~ _Ze i@ =i x
m i=1



Information-theoretic approaches
[Hennig and Schuler, 2013; Hernandez-Lobato et al., 2014]

aES(X; 0, Z)) = H[p(xmmlﬂ)] - IEp(yID,x)[H[p(xminl-Z) U {x, y})]]

15




Information-theoretic approaches

Uses the distribution of the minimum

Pmin(x) = p[x = argmin f(x)] = f

fiI—-

O Tets® - feonas

where 0 is the Heaviside’s step function. No closed form!
Use Thomson sampling to approximate the distribution.

Generate many sample paths from the GP, optimize them to
take samples from pyi,(x).



[Mustration of BO
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[Mustration of BO
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[Mustration of BO
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[Mustration of BO

f(x)
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[Mustration of BO
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[Mustration of BO
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[Mustration of BO
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[Mustration of BO
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Recap

» Bayesian optimization is a way of encoding our beliefs
about a property of a function (the minimum)

» Two key elements: the model and the acquisition function.

» Many choices in both cases, specially in terms of the
acquisition function used.

» The key is to find a good balance between exploration and
exploitation.



Multi-armed bandits

Problem in which a gambler at a row of slot machines has to
decide which machines to play given that each one returns a
benefit according to a probability distribution.




Multi-armed bandits

» Assume that the machines are correlated.



Multi-armed bandits

» Assume that the machines are correlated.

» Assume that the distribution over the benefits is
multivariate Gaussian.



Multi-armed bandits

» Assume that the machines are correlated.

» Assume that the distribution over the benefits is
multivariate Gaussian.

» Increase the number machines: take the limit case n — oo.



Multi-armed bandits

v

Assume that the machines are correlated.

\4

Assume that the distribution over the benefits is
multivariate Gaussian.

\4

Increase the number machines: take the limit case n — oo.

v

Bayesian optimization!



The choice of utility in practice
[Hoffman, Shahriari and de Freitas, 2013]

The choice of the utility may change a lot the result of the

optimisation.
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The choice of utility in practice
[Hoffman, Shahriari and de Freitas, 2013]
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The best utility depends on the problem and the level of
exploration/exploitation required.



Bayesian Optimization

As a ‘'mapping’ between two problems
BO is an strategy to transform the problem
xp = arg min f(x)
xeX
unsolvable!

into a series of problems:

Xy41 = argmax a(x; Dy, My)
X

where now:

» a(x) is inexpensive to evaluate.
» The gradients of a(x) are typically available.
» Still need to find x,,41.



Methods to optimise the acquisition function

This may not be easy.

» Gradient descent methods: Conjugate gradient, BFGS, etc.
» Liptchiz based heuristics: DIRECT.
» Evolutionary algorithms: CMA.

Some of these methods can also be used to directly optimize f



Gradient descent
[Avriel, 2013], but many others

Algorithm 2: Gradient Descent

input : f:R" - R a differentiable function

x© an initial solution

output: x*, a local minimum of the cost function f.
1 begin
2 kE+0;
3 while STOP-CRIT and (% < kmaz) do
4 xEHD e xB) — 0B f(x) ;

with o) = arg min f(x® — aV f(x)) ;
acky

6 k+k+1;
7 return x*)
8 end

We need to know the gradients. This is the case for most
acquisitions but not for all of them (PES for instance).



Gradient descent

May fall in local minima if the function is multimodal: multiple
initialisations.



‘Dlviding RECTangles’, DIRECT

[Perttunen at al. 1993]

Algorithm DIRECT 'myfen’ bounds,opts)
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Normalize the domain to be the unit hyper-cube with center ¢,
Find f(c1), fmin = fle1), =0, m=1
Evaluate f(c1 £ Jei , 1 <4 < n, and divide hyper-cube
while i < marits and m < mazevals do
Identify the set S of all pot. optimal rectangles/cubes
forallje §
Identify the longest side(s) of rectangle j
Ewvaluate myfcn at centers of new rectangles, and divide j into smaller rectangles
Update fpin, zatmin, and m
end for
i=141
end while

Minimal hypothesis about the acquisition



‘Dlviding RECTangles’, DIRECT

[Perttunen at al. 1993]
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Finds good solution in general and doesn’t need gradient. Not
generalizable to non-squared domains.



Covariance Matrix Adaptation, CMA

[Hansen and Ostermeier, 2001].

» Sample for a Gaussian with some mean u and covariance
matrix .

» Select the best points and use them to update u and .

» Sample form the new Gaussian.

Generation 1 Generation 2 Generation 3

Generation 4 Generation 5 Generation 6




BO vs other methods
[Osborne et al, 2009]

Bayesian optimization works better in practice!

GPGO 1-Step ](113(}() 2-Step|
EGO RBF DIRECT|Non-Periodic P(:riodi(:| Non-Periodic
Br 0.943 0.960 0.958 0.980 — —
C6  |0.962 0.962  0.940 0.890 — 0.967
G-P |0.783 0.815 0.989 0.804 — 0.989
H3 0970 0.867 0.868 0.980 — —
HG6 | 0.837 0.701  0.689 0.999 — —
Shi | 0.218 0.092  0.090 0.485 — —
Sh7 |0.159 0.102  0.099 0.650 — —
Shi0|0.135 0.100  0.100 0.591 — —
GK2 |0.571 0.567  0.538 0.643 — —
GK3 | 0.519 0.207  0.368 0.532 — —
Shu |0.492 0.383  0.396 0.437 0.348 0.348
G2 |0.979 1.000 0.981 1.000 1.000 —
5 |1.000 0.998  0.908 0.925 0.957 —
A2 0347 0.703  0.675 0.606 0.612 0.781
Ab |0.192 0.381 0.295 0.089 0.161 —
R 0.G52 0.647 0.776G 0.675 0.933 —
mean| 0.610 0.593  0.604 0.705 — —




Robotics video



How to initialise the model?

\4

One point in the centre of the domain.

\4

Uniformly selected random locations.

\4

Latin design.

v

Halton sequences.

v

Determinantal point processes.

The idea is always to start at some locations trying to minimise
the initial model uncertainty.



Latin design

n X n array filled with n different symbols, each occurring
exactly once in each row and exactly once in each column.
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pyDOE

Python framework for standard experimental design

AR
DOE :::

pyDOE '
o

Design of Experiments for Python  ° *, 1

pyDOE: The experimental design package for python

The pypoE package is designed to help the scientist, engineer, statistician, etc., to construct appropriate experimental designs.

Al avallable designs can be accessed after a simple import statement

>>> £rom pyoon import +

Capabilities
The package currently includes functions for creating designs for any number of factors

« Factorial Designs
1. General Full-Factorial (fa11£act)
2. 2-Level Full-Factorial (££2n)
3. 2-Level Fractional-Factorial (eractact)
4. Plackett-Burman (pbdesign)
o Response-Surface Designs
1. Box=Behnken (sbdesign)
2. Central-Composite (ccdesign)
o Randomized Designs
1. Latin-Hypercube (1hs)

Overvie:

Factorial Designs
Response Surface Designs
Randomized Designs

 section contents____|

pypo: The experimental
design package for python
Capabiliies
» Reguirements
# Installation and
 Important note
= Automatic install or

nload

= Manual download and

» References



Latin design

Window honors Ronald Fisher. Fisher’s student, A. W. F.
Edwards, designed this window for Caius College, Cambridge.

v i




Halton sequences
[Halton, 1964]

» Used to generate points in (0, 1) x (0, 1)
» Sequence that is constructed according to a deterministic
method that uses a prime number as its base.

Figure source: Wikipedia



Halton sequences
[Halton, 1964]

Better coverage than random.

o

o o

Halton Random

Figure source: Wikipedia



Determinantal point processes
Kulesza and Taskar, [2012]

We say that X is a ‘determinantal point process” on A with
kernel K if it is a simple point process on A with a joint intensity
or “correlation function” given by

pn(xlf ey xn) = det(K(xi/ xj)lﬁi,jﬁi’l)

» Probability measures over subsets.

» Possible to characterise the samples in terms of quality and
diversity.



Determinantal point processes
Kulesza and Taskar, [2012]
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Determinantal point processes
Kulesza and Taskar, [2012]




Why these ideas have been ignored for years?

» BO depends on its own parameters.

» Lack of software to apply these methods as a black
optimzation boxes.

» Reduced scalability in dimensions and number of
evaluations (this is still a problem).

Practical Bayesian Optimisation of Machine Learning Algorithms.
Snoek, Larochelle and Adams. NIPS 2012 (Spearmint)

+

Other works of M. Osborne, P. Hennig, N. de Freitas, etc.



BO independent of the parameters of the GP.
[Snoek et al. 2012]

Integrate out across parameter values or location outputs.

(@) Posterior samples under varying hyperparameters (@) Posterior samples after three data

oo [

(b) Expected improvement under varying hyperparameters (b) Expected improvement under three fantasics

(c) Integrated expected improvement (c) Expected improvement across fantasies
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GO gle "bayesian optimization”
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Aproximadarnente 44.600 resultados (0,39 segundos)

Bayesian optimization - Wikipedia, the free encyclopedia
https:/fen wikipedia.orgiwiki/Bayesian_optimization ~ Traducir esta pagina
They all trade-off exploration and exploitation so as to minimize the number of function
queries. As such, Bayesian optimization is well suited for functions that ..

History - Strateqy - Examples - Solution methods

Fof Practical Bayesian Optimization of Machine Learning ...
papers nips.cc/. /4522-practical-bayesian-optimizati .. ~ Traducir esta pagina

» Hot topic in Machine Learning.

» The BO workshop at NIPS is well stablished and it is a
mini-conference itself.



Bayesian optimization now

What has made BO so popular is that by first time it has allowed to
use Machine Learning algorithms without any human intervention.

BO takes to human out of the loop!



BO takes to human out of the loop




BO in industry: Twitter

We have joined forces
with Twitter!

W+

We have created a technology to make machine learning better and faster for companies,

automatically. Twitter is the platform for open communication on the internet and we believe

that Whetlab’s technology can have a great impact by accelerating Twitter’s internal machine
learning efforts.




BO in industry: Uber
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Available software

\4

Spearmint (https:/github.com/HIPS/Spearmint).

\4

BayesOpt (http://rmcantin.bitbucket.org/html/).

\4

pybo (https://github.com/mwhoffman/pybo).

\4

robo (https://github.com/automl/RoBO).



Open Software: GPyOpt

http://sheffieldml.github.io/GPyOpt/

pr—

- GPyOpt

~ Python opei

~ Developed by the i

~ Based on GPy  python framework for Gaus
Why?
With GPyOptyou can

* Solve global optimization problems with Sayesian optimization.

We will use it in the lab session



GPyOpt

\4

Python module for BO.

\4

Based on GPy. All functionalities available.

\4

Sparse GPs, Multi-output GPs, several likelihoods, etc.

\4

Parallel optimization.



GPyOpt: methods of use

Modular BO k = GPy.kern.RBF(1)

BO = BayesianOptimization(f=f, bounds=b, acquisition="El’,
kernel=k)

BO.run_optimization(max_iter)

Automatic ML

param = GPyOpt.methods.autoTune(objective, bounds)

Use GPyOpt using the same interface as Spearmint

config.json + problem.py



Extensions of Bayesian Optimization (tomorrow!)

» Multi-task Bayesian optimization [Wersky et all., 2013].

» Bayesian optimization for high dimensional problems
[Wang et al., 2013].

» Non-myopic methods [Osborne, 2010].

v

Discrete domains (armed bandits) [Srinivas et al., 2010].

v

Parallel approaches [Chevalier and Ginsbourger 2012].

\4

Conditional parameter spaces [Swersky et al. 2013].

v

Applications to robotics, molecule design, etc.



Projects

v

Work in groups of 2-3 people.

\4

Find and interesting function to optimize: computer
model, physical experiment etc.

v

Be original!

v

Use BO principles to optimize the function.

v

Write a small presentation/demonstration for the rest of the
gorup (10 mins!)



