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Recap

Yesterday we discussed:

» Bayesian Optimization is an efficient strategy to make ML
completely automatic.

» We can use Bayesian optimization principles to design
experiments sequentially.

» Probability theory and uncertainty are the keys.

Bayesian Optimization is Al for AL



Today’s agenda

» Which are the current challenges in Bayesian
Optimisation?

» Can we extend BO ideas to other domains?

» Some fresh research results.

BO is very active field with still many open questions.



Challenges and extensions in Bayesian Optimization
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Multi-task Bayesian optimization.

v

Non-stationary Bayesian optimization.

v

Inequality constrains
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Scalable BO: high dimensional problems.

v

Scalable BO: parallel approaches.

» Non-myopic methods.

v

Applications: molecule design.



Multi task Bayesian Optimization
[Wersky et al., 2013]

» We want to optimise an objective that it is very expensive
to evaluate but we have access to another function,
correlated with objective, that is cheaper to evaluate.

» The idea is to use the correlation among the function to
improve the optimization.

Multi-output Gaussian process

k(x,x') = BRk(x,x)



Multi task Bayesian Optimization
[Wersky et all., 2013]

(a) Multi-task GP sample functions (b) Independent GP predictions (C) Multi-task GP predictions

» Correlation among tasks reduces global uncertainty.

» The choice (acquisition) changes.



Multi task Bayesian Optimization
[Wersky et al,, 2013]

» In other cases we want to optimize several tasks at the
same time.

» We need to use a combination of them (the mean, for
instance) or have a look to the Pareto frontiers of the
problem.

Averaged expected improvement.
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Multi task Bayesian Optimization
[Wersky et al., 2013]

Min Function Value
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Non-stationary Bayesian Optimization
[Snoek et al., 2014]

The beta distributions allows for a rich family of
transformations.

wq(xq) = BetaCDF(x4; a4, Ba) ,

_fxd uadfl(l_u)ﬂdfl
~Jo B(ad, Ba)

du,
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Non-stationary Bayesian Optimization
[Snoek et al., 2014]

Idea: transform the function to make it stationary.

A non-stationary
periodic function
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Non-stationary Bayesian Optimization
[Snoek et al., 2014]

Results improve in many experiments by warping the inputs.

Extensions to multi-task warping.
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Inequality Constraints
[Gardner et al., 2014]

In many optimization problems the domain of the function is
not an hypercube.

Objective £(z, )

Constraint function ¢(z, y)
6

Simulation 1

Simulation 2




Inequality Constraints
[Gardner et al., 2014]

An option is to penalize the EI with an indicator function that
vanishes the acquisition out the domain of interest.

Io(x) = A(x) max {0, £(x") — (%)} = A(R)I(x)



Inequality Constraints
[Gardner et al., 2014]

Much more efficient than standard approaches.

Uniform Sampling

Simulation 1

Simulation 2
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Scalable BO: REMBO

[Wang et al., 2013]

Bayesian Optimization in a Billion Dimensions

via Random Embeddings
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Scalable BO: REMBO

[Wang et al., 2013]

A function f : X — R is called to have effective dimensionality
d with d < D if there exist a linear subspace 7 of dimension d
such that forall x;, ¢ 7 and x+ cT" € 7 we have

f(x1) = f(x, + x1) where 77 is the orthogonal complement of
T.



Scalable BO: REMBO

[Wang et al., 2013]
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Scalable BO: REMBO

[Wang et al., 2013]
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» Better in cases in the which the intrinsic dimensionality of
the function is low.

» Hard to implement (need to define the bounds of the
optimization after the embedding).



Scalable BO: Additive models

Use the Sobol-Hoeffding decompostion
D
FO = fo+ Y Fl)+ Y fifwix) + -+ fi_p(x)
i=1 i<j
where

> fo= [y fodx
> filxi) = fx_i fx)dx_i - fo

> etc...

and assume that the effects of high order than g are null.



Scalable BO: Additive models

High Dimensional Bayesian Optimisation and Bandits via Additive Models

Kirthevasan Kandasamy
Jeff Schneider
Barnabis Poczos

Camegie Mellon University, Pittsburgh, PA, USA

Abstract

Optimisation (BO) is a technique used
in optimising a D-dimensional function which
is typically expensive to evaluate. While there
have been many successes for BO in low dimen-
sions, scaling it to high dimensions has been no-
toriously difficult. Existing literature on the topic
are under very restrictive settings. In this paper,
we identify two key challenges in this endeavour.
We tackle these challenges by assuming an addi-
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Bayesian Optimisation (Mockus & Mockus, 1991) refers
to a suite of methods that tackle this problem by modeling
f as a Gaussian Process (GP). In such methods the chal-
lenge is two fold. At time step ¢, first estimate the unknown
f from the query value-pairs. Then use it to intelligently
query at x; where the function is likely to be high. For
this, we first we use the posterior GP to construct an acqui-
sition function y; which captures the value of the experi-
ment. Then we maximise ¢, to determine x;.

Ganssian nrocess bandits and Bavesian antimisation (GPB/
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Scalable BO: Parallel/batch BO

Avoiding the bottleneck of evaluating f

» Cost of f(x,) = costof {f(xu1), ..., f(Xunp)}-
» Many cores available, simultaneous lab experiments, etc.



Considerations when designing a batch
» Available pairs {(x;, y;)}!; are augmented with the
evaluations of f on B} = {x1, ..., X¢up}-

> Goal: design B)",..., B,}.

Notation:

» 1, represents the available data set O, and the GP
structure when 7 data points are available.

» a(x; I,): generic acquisition function given 7.



Selecting x; , the k-th element of the t-th batch

Sequential policy: Maximize:

a(x; I t,k—l)



Selecting x; , the k-th element of the t-th batch

Sequential policy: Maximize:

a(x; I t,k—l)

Greedy batch policy: it is not tractable: Maximize:

k-1

f a(x; Ly p_1) H Py jixt,js Lo, ji-1)p(e 1L 1 j-1)dxe, jdy j
=1

> p(ys, jlx i I j—1)3 predictive distribution of the GP.
> p(xjlLj-1) = 6(xt,j — arg maxyxex a(x; L4 j-1)).



Available approaches

[Azimi et al., 2010; Azimi et al., 2011; Azimi et al., 2012; Desautels et al., 2012; Chevalier
et al., 2013; Contal et al. 2013]

» Exploratory approaches, reduction in system uncertainty.
» Generate ‘fake’ observations of f using p(y;,jlx;, Zt,j-1)-

» Simultaneously optimize elements on the batch using the
joint distribution of y;,, ... Yt 4.

Bottleneck

All these methods require to iteratively update p(y;,jlx;j, Z+-1)
to model the iteration between the elements in the batch: O(1?)

How to design batches reducing this cost? BBO-LP



Goal: eliminate the marginalization step

“To develop an heuristic approximating the ‘optimal batch design
strategy’ at lower computational cost, while incorporating
information about global properties of f from the GP model into the
batch design”

Lipschitz continuity:

|f(x1) — f(x2)l < Llxa = xall,



Interpretation of the Lipschitz continuity of f
M = maxyex f(x) and Brx/- (x) ={xe X :|x—xjll < rxj} where

M- f(x))
ry =

s — True function

« o samples

-~ Exclusion cones
Active regions

xXp ¢ Brxj (xj) otherwise, the Lipschitz condition is violated.



Probabilistic version of B, (x)
We can do this because f(x) ~ GP(u(x), k(x,x))

M-u(x;)

2(x;
> 1y, is Gaussian with u(ry,) = —— and az(rxj) = 2%

JE A




Probabilistic version of B, (x)
We can do this because f(x) ~ GP(u(x), k(x,x))

M-u(x;)

2(x.
> 1y, is Gaussian with u(ry,) = —— and az(rxj) = 2%

JE

Local penalizers: ¢(x;x;) = p(x ¢ Brx]_ (x/))

p;xj) = plrg <Ix—x;l)
0.5erfc(—z)

_ 1 T ,
whereZ—\/ZJ%_(xj)(Lllx] x| = M + un(x;))-

» Reflects the size of the 'Lipschitz’ exclusion areas.

» Approaches to 1 when x is far form x j and decreases
otherwise.



Idea to collect the batches

Without using explicitly the model.

Optimal batch: maximization-marginalization

k-1

fa(xi Tir-1) H P(yt,j

j=1

Xt,jr ft,j—l)P(Xt,j

ft,j—l)dxt,jd]/t,j

Proposal: maximization-penalization.

Use the @(x; x;) to penalize the acquisition and predict the expected
change in a(x; Iy j_1).



Local penalization strategy
[Gonzélez, Dai, Hennig, Lawrence, 2015]
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Local penalization strategy

[Gonzélez, Dai, Hennig, Lawrence, 2015]

1st batch element 2nd batch element 3th batch element
— a(@) RERRC) == a(z)p, (z)
'ul — a(z)p,(z) —a(z)p, (z)p, ()

— ¢l2)

value
|
5

value

value

xo

The maximization-penalization strategy selects x; x as

k-1
o = argmag(aCo Lo | [ ooy,
]:

g is a transformation of a(x; I;) to make it always positive.



Example for L = 50

Penalized surrogate

Adaptive

o

L controls the exploration-exploitation balance within the batch.



Example for L = 100

Adaptive Penalized surrogate

L controls the exploration-exploitation balance within the batch.



Example for L = 150

Adaptive Penalized surrogate

L controls the exploration-exploitation balance within the batch.



Example for L = 250

Adaptive Penalized surrogate

L controls the exploration-exploitation balance within the batch.



Finding an unique Lipschitz constant
Let f : X — R be a L-Lipschitz continuous function defined on
a compact subset X C R”. Then
L,= \Y ,
p r>I<1eaXX Il f(x)”p

is a valid Lipschitz constant.

The gradient of f at x" is distributed as a multivariate Gaussian
VFIX, y, X" ~ N(uv(x), £5(x))

We choose:
Lgp-1ca = max v O



Sobol function

Best (average) result for some given time budget.

d oy EL UCB Rand-EI Rand-UCB SM-UCB B-UCB
5 0.3240.05 0.31+0.05 1.86+1.06 0.560.03
210 0.31+0.03 0.3240.06 0.6540.32 0.79+0.42 4.40+2.97 0.59-0.00
20 0.6740.31 0.75+0.32 - 0.57+0.01
5 9.194+5.32 10.59+5.04 137.2+113.0 6.01£0.00
5 10 8.8443.69 11.89+9.44 1.74£1.47 2.20£1.85 108.7+74.38 3.77£0.00
20 2.18+2.30 2.76+3.06 - 2.53+0.00
5 690.5£947.5 182512149  9e+04+7e+04  2098£0.00
10 10 559.1+1014 146341803 200944559  1149+1830  9e+04+le+05  857.840.00
20 639.441204  385.9+642.9 - 1656+0.00
d PE-UCB Pred-EI Pred-UCB qEI LP-EI LP-UCB
5 0.99+0.74 0.4140.15 0.4510.16 1.53£0.86 0.35%0.11 0.31:£0.06
2 10 0.66+0.29 1.16£0.70 1.2640.81 3.82£2.09 0.66+0.48 0.69£0.51
20 0.75+0.44 1.28+0.93 1.34+40.77 - 0.50+0.21 0.58+0.21
5 123.5481.43 10.431+4.88 11.77£9.44 15.70+8.90 11.8545.68 10.854-8.08
5 10 120.8478.56 9.58+7.85 11.66+11.48  17.69+9.04 3.88+4.15 1.88+2.46
20 98.60+82.60 8.58+8.13 10.86+10.89 - 6.53+4.12 1.44+1.93
5 2e+05+2e+05  793.0+1226 141243032 - 1881+1176 1194+1428
10 10 6e+0448e+04 442617179 172543205 - 104241562 100.4+338.7
20 Se+04dde+04  1091£1724 223143110 - 124941570 20.75£50.12




2D experiment with ‘large domain’
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Maximizing gene translation

» Maximization of a 70 dimensional surface representing the
efficiency of hamster cells producing proteins.
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Support Vector Regression
» Minimization of the RMSE on a test set over 3 parameters.
» 'Physiochemical” properties of protein tertiary structure?.

» 45730 instances and 9 continuous attributes.
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Non myopic methods

» Most global optimisation techniques are myopic, in
considering no more than a single step into the future.

» Relieving this myopia requires solving the multi-step
lookahead problem: the global optimisation of an function
by considering the significance of the next function
evaluation on function evaluations (steps) further into the
future.



Myopic loss

Denote by 1 = min{yp}, the current best found value. We can
define the loss of evaluating f this last time at x. assuming it is
returning y. as

o) v ity <7
/\(y*)—{m if y.>n.

Its expectation is

Ar(xlZ0) £ E[min(y., )] = f Ap(yle, Zo)dy.



The myopic loss has closed form under Gaussian
likelihoods

A(x.[70)

. f N Dy,
n

+

ui
f YN (ys; 1, 0*)dy.

N+ (u— ;0% — N, 1, 0%),

where we have abbreviated %(y.|7¢) as 0% and u(y.|Z) as p.



Looking many steps ahead

An(x|Lo) = fﬁ(yn) H p(yixj, £ j-1)p(xIL j-1)
=1
ay.... dy:,dxz ...dxy,
where
p(yjlx;, Lj1) = N(]/j;y(xj; Ti), O’Z(lefj—1))
is the predictive distribution of the GP at x; and

p(x;lLj-1) = 6(xj —arg 1)r(r1€1/r\/1 An_j+1(x*lfj_1))

reflects the optimization step.



Looking many steps ahead

Graphical model representing the decision process of a myopic
loss.

Dy (D))

1




Problems

» The myopic loss is very expensive to compute.

» As in the batch Bayesian optimization cases, it requires to
iterative solve an expectation-optimization problem.



Relieving the myopia of Bayesian optimization



Relieving the myopia of Bayesian optimization

We present...



Relieving the myopia of Bayesian optimization

We present... GLASSES!

Global optimisation with Look-Ahead through Stochastic Simulation
and Expected-loss Search

[Gonzalez, Osborne, Lawrence, 2015]



GLASSES

Idea: jointly model the epistemic uncertainty in all steps ahead.




GLASSES

p(x2, ..., x40, x.): joint probability distribution over the steps
ahead:

Iy lZ0) = f AWnPIX, Zo, x)p(X1Zo, x.)dydX

> V= {Ys,...,..., ynl the vector of future evaluations of f.

» X the (n — 1) X g dimensional matrix whose rows are the
future evaluations xo, . . ., x,.

» p(ylX, 7o, x.) is multivariate Gaussian.



GLASSES

v

Select a good p(X|Zy, x.) is complicated.

v

We fix some x: the result of some oracle 7, (x.).

v

Denotebyy = (y«,...,..., yn)T the vector of future
locations evaluations of f at F(x.).

v

It is possible to rewrite the expected loss A, (x* | Iy, ﬁ(x*))
as

An(x: | To, Fr(x.)) = E[min(y, n)]



GLASSES: Computing the value of the expected loss

Use Expectation Propagation observing that

E[min(y,n)] = 7 f thi(Y)N(Y? u, X)dy 0)

" Z f y]Ht]zY)N(y,y,Z)dy

where h;(y) = {y; > n} and

I{y; < n) if i=j
tii(y) =

{0 <y;—y;} otherwise.



GLASSES: predicting the steps ahead

opic Expected Loss Future locations - case 1

Yry¢ Future steps
¢ Putative point

Future locations - case 2
T -

3 Yy Future steps
¥r ¥ Putative point

- 1 + 3
180 =15 S1o -0s 0o 1 20 —15 -10 -05 08 05 10 15 20

Step 1 Step 3 Step 4

To predict the steps ahead we use the batch method in
[Gonzalez, Dai, Hennig and Lawrence, 2015]



GLASSES: loss function
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GLASSES: results

MPI GP-LCB EL EL-2 EL-3 EL-5 EL-10  GLASSES
SinCos 0.7147 0.6058 0.7645  0.8656  0.6027  0.4881 0.8274 0.9000
Cosines 0.8637 0.8704 08161  0.8425 0.8118  0.7946 0.7477 0.8722
Branin 0.9854 0.9616  0.9900 09856 09673  0.9824 0.9887 0.9811
Sixhumpeamel — 0.8983 0.9346 0.9299 09115 09067  0.8970 0.9123 0.8880
Mecormick 0.9514  0.9326 0.9055  0.9139 0.9189  0.9283  0.9389 0.9424
Dropwave 0.7308 0.7413 0.7667  0.7237 0.7555  0.7293 0.6860 0.7740
Powers 0.2177 0.2167 0.2216  0.2428 0.2390 0.2339 0.3670
Ackley-2 0.8230 0.8975 0.7333  0.6382 0.6864 0.6293 0.7001
Ackley-5 0.1832 0.2082 0.5473  0.6694 3 03744  0.6700 0.4348
Ackley-10 0.9893 0.9864 0.8178  0.9900 0.9912 0.9916  0.8340 0.8567
Alpine2-2 0.8628  0.8482 0.7902  0.7467  0.5988  0.6699 0.6393 0.7807
Alpine2-5 0.5221 0.6151 0.7797 0.6740 0.6431  0.6592 0.6747 0.7123

GLASSES is overal the best method.

Make sense to use GLASSES!
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Application: Synthetic gene design

» Use mammalian cells to make protein products.
» Control the ability of the cell-factory to use synthetic DNA.

Optimize genes (ATTGGTUGA...) to best enable the
cell-factory to operate most efficiently [Gonzalez et al. 2014].



Central dogma of molecular biology

Transcription Translation
rate rate

Gene =—p MRNA =P Protein

ATGCTGCAGATGTGGGGGTTTGTTCT
GCTGCAGGACAGGGTGTGGAGCAGC
CTGCCAAATTGATGTCTGTGGAGGGA



Big question

Remark: ‘Natural’ gene sequences are not necessarily
optimized to maximize protein production.

ATGCTGCAGATGTGGGGGTTTGTTCTCTATCTCTTCCTGAC
TTTGTTCTCTATCTCTTCCTGACTTTGTTCTCTATCTCTTC...

Considerations

» Different gene sequences — same protein.

» The sequence affects the synthesis efficiency.

Which is the most efficient sequence to produce a protein? I




Redundancy of the genetic code

v

Codon: Three consecutive bases: AAT, ACG, etc.

Protein: sequence of amino acids.

v

v

Different codons may encode the same aminoacid.
ACA=ACU encodes for Threonine.

v

ATUUUGACA = ATUUUGACU

synonyms sequences — same protein but different efficiency



Redundancy of the genetic code

Transcription Translation
rate rate

Gene = MRNA =P Protein

ATGCTGCAGATGTGGGGGTTTGTTCT
GCTGCAGGACAGGGTGTGGAGCAGC
CTGCCAAATTGATGTCTGTGGAGGGA
ACCTTTGCTCGG




How to design a synthetic gene?

A good model is crucial—: Gene sequence features — protein
production efficiency.

Bayesian Optimization principles for gene design

do:

1. Build a GP model as an emulator of the cell behavior.
2. Obtain a set of gene design rules (features optimization).

3. Design one/many new gene/s coherent with the design
rules.

4. Test genes in the lab (get new data).

until the gene is optimized (or the budget is over...).



Model as an emulator of the cell behavior

Model inputs
Features (x;) extracted gene sequences (s;): codon frequency,
cai, gene length, folding energy, etc.

Model outputs
Transcription and translation rates f := (fa, fg).

Model type

Multi-output Gaussian process f ¥ GP(m, K) where Kis a
corregionalization covariance for the two-output model (+ SE
with ARD).

The correlation in the outputs help!



Model as an emulator of the cell behavior




Obtaining optimal gene design rules

Maximize the averaged EI [Swersky et al. 2013]
a(x) = 5(x)(—ud(-u) + p(u))

where u = (Yuax — M(x))/5(x) and

(x) = = Y £, 32(x) = ? Y KX

I=a, Ll'=a,p

A batch method is used when several experiments can be run
in parallel



Designing new genes coherent with the optimal
design rules

Simulating-matching approach:

1. Simulate genes ‘coherent” with the target (same
amino-acids).
2. Extract features.

3. Rank synthetic genes according to their similarity with the
‘optimal” design rules.

Ranking criterion: eval(s|x*) = Z?:l wijlx; — x].*|

» x*: optimal gene design rules.
> s, xj generated ‘synonyms sequence’ and its features.

» wj: weights of the p features (inverse length-scales of the
model covariance).



Results for 10 low-expressed genes

Predicted performance of recombinant gene profiles
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Wrapping up

» BO is fantastic tool for parameter optimization in ML and
experimental design.

» The model and acquisition function are the two most
important bits.

» Many useful extensions for BO.
» To scale BO is a current challenge.

» Software available!
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Use Bayesian optimization!



