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Recap

Yesterday we discussed:

I Bayesian Optimization is an efficient strategy to make ML
completely automatic.

I We can use Bayesian optimization principles to design
experiments sequentially.

I Probability theory and uncertainty are the keys.

Bayesian Optimization is AI for AI.



Today’s agenda

I Which are the current challenges in Bayesian
Optimisation?

I Can we extend BO ideas to other domains?
I Some fresh research results.

BO is very active field with still many open questions.



Challenges and extensions in Bayesian Optimization

I Multi-task Bayesian optimization.

I Non-stationary Bayesian optimization.

I Inequality constrains

I Scalable BO: high dimensional problems.

I Scalable BO: parallel approaches.

I Non-myopic methods.

I Applications: molecule design.



Multi task Bayesian Optimization
[Wersky et al., 2013]

I We want to optimise an objective that it is very expensive
to evaluate but we have access to another function,
correlated with objective, that is cheaper to evaluate.

I The idea is to use the correlation among the function to
improve the optimization.

Multi-output Gaussian process

k̃(x, x′) = B ⊗ k(x, x′)



Multi task Bayesian Optimization
[Wersky et all., 2013]

I Correlation among tasks reduces global uncertainty.
I The choice (acquisition) changes.



Multi task Bayesian Optimization
[Wersky et al,, 2013]

I In other cases we want to optimize several tasks at the
same time.

I We need to use a combination of them (the mean, for
instance) or have a look to the Pareto frontiers of the
problem.

Averaged expected improvement.
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Non-stationary Bayesian Optimization
[Snoek et al., 2014]

The beta distributions allows for a rich family of
transformations.



Non-stationary Bayesian Optimization
[Snoek et al., 2014]

Idea: transform the function to make it stationary.



Non-stationary Bayesian Optimization
[Snoek et al., 2014]

Results improve in many experiments by warping the inputs.

Extensions to multi-task warping.
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Inequality Constraints
[Gardner et al., 2014]

In many optimization problems the domain of the function is
not an hypercube.



Inequality Constraints
[Gardner et al., 2014]

An option is to penalize the EI with an indicator function that
vanishes the acquisition out the domain of interest.



Inequality Constraints
[Gardner et al., 2014]

Much more efficient than standard approaches.
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[Wang et al., 2013]



Scalable BO: REMBO
[Wang et al., 2013]

A function f : X → < is called to have effective dimensionality
d with d ≤ D if there exist a linear subspace T of dimension d
such that for all x⊥ ⊂ T and x> ⊂T> ⊂ T we have
f (x⊥) = f (x⊥ + x>) where T> is the orthogonal complement of
T .



Scalable BO: REMBO
[Wang et al., 2013]



Scalable BO: REMBO
[Wang et al., 2013]

I Better in cases in the which the intrinsic dimensionality of
the function is low.

I Hard to implement (need to define the bounds of the
optimization after the embedding).



Scalable BO: Additive models

Use the Sobol-Hoeffding decompostion

f (x) = f0 +

D∑
i=1

fi(xi) +
∑
i< j

fi j(xi, x j) + · · · + f1,...,D(x)

where

I f0 =
∫
X

f (x)dx

I fi(xi) =
∫
X−i

f (x)dx−i - f0
I etc...

and assume that the effects of high order than q are null.



Scalable BO: Additive models
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Scalable BO: Parallel/batch BO
Avoiding the bottleneck of evaluating f

I Cost of f (xn) = cost of { f (xn,1), . . . , f (xn,nb)}.
I Many cores available, simultaneous lab experiments, etc.



Considerations when designing a batch

I Available pairs {(x j, yi)}ni=1 are augmented with the
evaluations of f on Bnb

t = {xt,1, . . . , xt,nb}.

I Goal: design Bnb
1 , . . . ,B

nb
m .

Notation:

I In: represents the available data setDn and the GP
structure when n data points are available.

I α(x;In): generic acquisition function given In.



Selecting xt,k, the k-th element of the t-th batch

Sequential policy: Maximize:

α(x;It,k−1)

Greedy batch policy: it is not tractable: Maximize:∫
α(x;It,k−1)

k−1∏
j=1

p(yt, j|xt, j,It, j−1)p(xt, j|It, j−1)dxt, jdyt, j

I p(yt, j|x j,It, j−1): predictive distribution of the GP.
I p(x j|It, j−1) = δ(xt, j − arg maxx∈X α(x;It, j−1)).
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Available approaches
[Azimi et al., 2010; Azimi et al., 2011; Azimi et al., 2012; Desautels et al., 2012; Chevalier
et al., 2013; Contal et al. 2013]

I Exploratory approaches, reduction in system uncertainty.
I Generate ‘fake’ observations of f using p(yt, j|x j,It, j−1).
I Simultaneously optimize elements on the batch using the

joint distribution of yt1 , . . . yt,nb.

Bottleneck

All these methods require to iteratively update p(yt, j|x j,It, j−1)
to model the iteration between the elements in the batch: O(n3)

How to design batches reducing this cost? BBO-LP



Goal: eliminate the marginalization step

“To develop an heuristic approximating the ’optimal batch design
strategy’ at lower computational cost, while incorporating

information about global properties of f from the GP model into the
batch design”

Lipschitz continuity:

| f (x1) − f (x2)| ≤ L‖x1 − x2‖p.



Interpretation of the Lipschitz continuity of f

M = maxx∈X f (x) and Brxj
(x j) = {x ∈ X : ‖x − x j‖ ≤ rx j}where

rx j =
M − f (x j)

L
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Probabilistic version of Brx(x)
We can do this because f (x) ∼ GP(µ(x), k(x, x′))

I rx j is Gaussian with µ(rx j) =
M−µ(x j)

L and σ2(rx j) =
σ2(x j)

L2 .

Local penalizers: ϕ(x; x j) = p(x < Brx j
(x j))

ϕ(x; x j) = p(rx j < ‖x − x j‖)
= 0.5erfc(−z)

where z = 1√
2σ2

n(x j)
(L‖x j − x‖ −M + µn(x j)).

I Reflects the size of the ’Lipschitz’ exclusion areas.
I Approaches to 1 when x is far form x j and decreases

otherwise.
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Idea to collect the batches
Without using explicitly the model.

Optimal batch: maximization-marginalization∫
α(x;It,k−1)

k−1∏
j=1

p(yt, j|xt, j,It, j−1)p(xt, j|It, j−1)dxt, jdyt, j

Proposal: maximization-penalization.

Use the ϕ(x; x j) to penalize the acquisition and predict the expected
change in α(x;It,k−1).



Local penalization strategy
[González, Dai, Hennig, Lawrence, 2015]
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The maximization-penalization strategy selects xt,k as

xt,k = arg max
x∈X

g(α(x;It,0))
k−1∏
j=1

ϕ(x; xt, j)

 ,
g is a transformation of α(x;It,0) to make it always positive.
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Example for L = 50

L controls the exploration-exploitation balance within the batch.



Example for L = 100

L controls the exploration-exploitation balance within the batch.



Example for L = 150

L controls the exploration-exploitation balance within the batch.



Example for L = 250

L controls the exploration-exploitation balance within the batch.



Finding an unique Lipschitz constant

Let f : X → IR be a L-Lipschitz continuous function defined on
a compact subset X ⊆ IRD. Then

Lp = max
x∈X
‖∇ f (x)‖p,

is a valid Lipschitz constant.

The gradient of f at x∗ is distributed as a multivariate Gaussian

∇ f (x∗)|X,y, x∗ ∼ N(µ∇(x∗),Σ2
∇

(x∗))

We choose:
L̂GP−LCA = max

X

‖µ∇(x∗)‖



Sobol function

Best (average) result for some given time budget.



2D experiment with ‘large domain’

Comparison in terms of the wall clock time
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Maximizing gene translation

I Maximization of a 70 dimensional surface representing the
efficiency of hamster cells producing proteins.
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Support Vector Regression

I Minimization of the RMSE on a test set over 3 parameters.
I ’Physiochemical’ properties of protein tertiary structure?.
I 45730 instances and 9 continuous attributes.
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Challenges and extensions in Bayesian Optimization

I Multi-task Bayesian optimization.

I Non-stationary Bayesian optimization.

I Inequality constrains

I Scalable BO: high dimensional problems.

I Scalable BO: parallel approaches.

I Non-myopic methods.

I Applications: molecule design.



Non myopic methods

I Most global optimisation techniques are myopic, in
considering no more than a single step into the future.

I Relieving this myopia requires solving the multi-step
lookahead problem: the global optimisation of an function
by considering the significance of the next function
evaluation on function evaluations (steps) further into the
future.



Myopic loss

Denote by η = min{y0}, the current best found value. We can
define the loss of evaluating f this last time at x∗ assuming it is
returning y∗ as

λ(y∗) ,
{

y∗; if y∗ ≤ η
η; if y∗ > η.

Its expectation is

Λ1(x∗|I0) , E[min(y∗, η)] =

∫
λ(y∗)p(y∗|x∗,I0)dy∗



The myopic loss has closed form under Gaussian
likelihoods

Λ1(x∗|I0) , η

∫
∞

η
N(y∗;µ, σ2)dy∗

+

∫ η

−∞

y∗N(y∗;µ, σ2)dy∗

= η + (µ − η)Φ(η;µ, σ2) − σ2
N(η, µ, σ2),

where we have abbreviated σ2(y∗|I0) as σ2 and µ(y∗|I0) as µ.



Looking many steps ahead

Λn(x∗|I0) =

∫
λ(yn)

n∏
j=1

p(y j|x j,I j−1)p(x j|I j−1)

dy∗ . . . dyndx2 . . .dxn

where

p(y j|x j,I j−1) = N
(
y j;µ(x j;I j−1), σ2(x j|I j−1)

)
is the predictive distribution of the GP at x j and

p(x j|I j−1) = δ
(
x j − arg min

x∗∈X
Λn− j+1(x∗|I j−1)

)
reflects the optimization step.



Looking many steps ahead

Graphical model representing the decision process of a myopic
loss.



Problems

I The myopic loss is very expensive to compute.
I As in the batch Bayesian optimization cases, it requires to

iterative solve an expectation-optimization problem.



Relieving the myopia of Bayesian optimization

We present... GLASSES!

Global optimisation with Look-Ahead through Stochastic Simulation
and Expected-loss Search

[Gonzalez, Osborne, Lawrence, 2015]
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GLASSES

Idea: jointly model the epistemic uncertainty in all steps ahead.



GLASSES

p(x2, . . . , xn|I0, x∗): joint probability distribution over the steps
ahead:

Γn(x∗|I0) =

∫
λ(yn)p(y|X,I0, x∗)p(X|I0, x∗)dydX

I y = {y∗, . . . , . . . , yn} the vector of future evaluations of f .
I X the (n − 1) × q dimensional matrix whose rows are the

future evaluations x2, . . . , xn.
I p(y|X,I0, x∗) is multivariate Gaussian.



GLASSES

I Select a good p(X|I0, x∗) is complicated.
I We fix some x: the result of some oracle Fn(x∗).
I Denote by y = (y∗, . . . , . . . , yn)T the vector of future

locations evaluations of f at Fn(x∗).

I It is possible to rewrite the expected loss Λn
(
x∗ | I0,Fn(x∗)

)
as

Λn
(
x∗ | I0,Fn(x∗)

)
= E

[
min(y, η)

]



GLASSES: Computing the value of the expected loss

Use Expectation Propagation observing that

E[min(y, η)] = η

∫
Rn

n∏
i=1

hi(y)N(y;µ,Σ)dy (0)

+

n∑
j=1

∫
Rn

y j

n∏
i=1

t j,i(y)N(y;µ,Σ)dy

where hi(y) = I{yi > η} and

t j,i(y) =


I{y j ≤ η} if i=j

I{0 ≤ yi − y j} otherwise.



GLASSES: predicting the steps ahead

To predict the steps ahead we use the batch method in
[Gonzalez, Dai, Hennig and Lawrence, 2015]



GLASSES: loss function

The more steps remain, the more explorative is the non-myopic
loss.



GLASSES: results

GLASSES is overal the best method.

Make sense to use GLASSES!



Challenges and extensions in Bayesian Optimization
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Application: Synthetic gene design

I Use mammalian cells to make protein products.
I Control the ability of the cell-factory to use synthetic DNA.

Optimize genes (ATTGGTUGA...) to best enable the
cell-factory to operate most efficiently [González et al. 2014].



Central dogma of molecular biology



Big question

Remark: ‘Natural’ gene sequences are not necessarily
optimized to maximize protein production.

ATGCTGCAGATGTGGGGGTTTGTTCTCTATCTCTTCCTGAC
TTTGTTCTCTATCTCTTCCTGACTTTGTTCTCTATCTCTTC...

Considerations

I Different gene sequences→ same protein.
I The sequence affects the synthesis efficiency.

Which is the most efficient sequence to produce a protein?



Redundancy of the genetic code

I Codon: Three consecutive bases: AAT, ACG, etc.
I Protein: sequence of amino acids.
I Different codons may encode the same aminoacid.
I ACA=ACU encodes for Threonine.

ATUUUGACA = ATUUUGACU

synonyms sequences→ same protein but different efficiency



Redundancy of the genetic code



How to design a synthetic gene?

A good model is crucial—: Gene sequence features→ protein
production efficiency.

Bayesian Optimization principles for gene design

do:

1. Build a GP model as an emulator of the cell behavior.
2. Obtain a set of gene design rules (features optimization).
3. Design one/many new gene/s coherent with the design

rules.
4. Test genes in the lab (get new data).

until the gene is optimized (or the budget is over...).



Model as an emulator of the cell behavior

Model inputs
Features (xi) extracted gene sequences (si): codon frequency,
cai, gene length, folding energy, etc.

Model outputs
Transcription and translation rates f := ( fα, fβ).

Model type
Multi-output Gaussian process f ≈ GP(m,K) where K is a
corregionalization covariance for the two-output model (+ SE
with ARD).

The correlation in the outputs help!



Model as an emulator of the cell behavior



Obtaining optimal gene design rules

Maximize the averaged EI [Swersky et al. 2013]

α(x) = σ̄(x)(−uΦ(−u) + φ(u))

where u = (ymax − m̄(x))/σ̄(x) and

m̄(x) =
1
2

∑
l=α,β

f∗(x), σ̄2(x) =
1
22

∑
l,l′=α,β

(K∗(x, x))l,l′ .

A batch method is used when several experiments can be run
in parallel



Designing new genes coherent with the optimal
design rules

Simulating-matching approach:

1. Simulate genes ‘coherent’ with the target (same
amino-acids).

2. Extract features.
3. Rank synthetic genes according to their similarity with the

‘optimal’ design rules.

Ranking criterion: eval(s|x?) =
∑p

j=1 w j|x j − x?j |

I x?: optimal gene design rules.
I s, x j generated ‘synonyms sequence’ and its features.
I w j: weights of the p features (inverse length-scales of the

model covariance).



Results for 10 low-expressed genes



Wrapping up

I BO is fantastic tool for parameter optimization in ML and
experimental design.

I The model and acquisition function are the two most
important bits.

I Many useful extensions for BO.

I To scale BO is a current challenge.

I Software available!



Picture source: http://peakdistrictcycleways.co.uk

Use Bayesian optimization!


