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Introduction

Leaning problem
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Support Vector Machines

SVM History

Mercer theorem: Mercer, 1909.

Geometrical interpretation of kernels: Aizerman et al., 1964.

Hyperplane in an non parametric context: Vapnik and
Chervonenkis, 1964.

SVM origin: Boser, Guyon y Vapnik, 1992.

SVMs as regularization problem: Wahba, 1999.

SVM review and open problems: Moguerza and Muñoz, 2006.
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Support Vector Machines

Mathematical foundations

Ill-posed problems

Well-posed problems (Hadamard)

A solution exists.

The solution is unique.

The solution depends continuously on the data.

Examples of ill-posed problems

Density estimation.

Classification problems.

Regression problems.
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Example of ill-posed problem
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Support Vector Machines
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Example of well-posed problem
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Support Vector Machines

Mathematical foundations

Elements of the problem and notation

Elements of the problem

There exists f : X → Y .

A probability measure p over X × Y . E [y |x] = f (x).

X a compact domain or manifold in an Euclidean space.

L(f (x), y) a generic loss function.

Objetive

To find the best approximation to f : X → Y given a sample
M = {(xi , yi) ∈ X × Y }ni=1.
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Hypothesis space

Structure of the hypothesis space

Let C (X ) a Banach space of the continuos functions over X with
the norm

‖f ‖∞ = sup
x∈X
|f (x)|.

¿Where to search for f ?

In a compact subspace H de C (X ) ⇒ hypothesis space.
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Generalization Error

Theoretical criteria for searching f

Minimize the risk functional R(f ) : C (X )→ IR (generalization
error)

R(f ) =

∫
X×Y

L(f (x)− y)p(x, y)dxdy .

Existence of f

The existance of f ∗ is guaranteed due to the compactness of
H an the continuity of R(f ).

If H is convex f ∗ is unique ⇒ well-posed problem.
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Empirical Error

Practical criteria for searching f

To minimize the functional

Remp(f ) =
1

n

n∑
i=1

L(f (xi ), yi ),

Error for f on the sample M.

¿Makes sense?

Yes,

If H is compact ⇒ the problem is well posed.

The convergence of the empirical error to the generalization
error (for the SVM loss function) is guaranteed.
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Support Vector Machines
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Compactness of the hypothesis space

Compactness imposition

Through the Tikhonov regularization. To minimize on H the
functional risk

F (f ) =
1

n

n∑
i=1

L(yi , f (xi )) + µΩ(f ) ,

µ > 0.

H is an appropriate space of functions.

Ω(f ) is a functional convex and positive.
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Support Vector Machines
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Mercer kernels

Definition

Let K : X × X → IR a continuous and symmetric function. Let
assume that K is positive definite, that is, given a set
{x1, ..., xn} ⊂ X the matrix K [x ] with components K (xi , xj) is
positive definite. Then K is a Mercer kernel.
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Support Vector Machines
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Mercer theorem

Theorem

Let X a compact domain or manifold, ν a Borel measure over X
and K : X × X −→ IR un Kernel de Mercer. Sea λk the k-th
eigenvalue of LK and {φk}k≥1 the corresponding eigenvector.
Then, for all x , y ∈ X

K (x , y) =
∞∑

k=1

λkφk(x)φk(y)

where the where the convergence is absolute (for each
(x , y) ∈ X × X ) and uniform (on (x , y) ∈ X × X ).
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Interpretation of the Mercer theorem

Geometrical interpretation

K (x, y) can be interpreted as a scalar product in the transformed
space by Φ(x) = (

√
λ1φ1(x),

√
λ2φ2(x), ...).

K (x, y) =< Φ(x),Φ(y) >

Examples

Linear kernel K (x, y) = xTy.

Polinomial kernel K (x, y) = (a + xTy)b.

RBF kernel K (x, y) = e−
1

2σ2 ‖x−y‖2

.
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Reproducing Kernel Hilbert Spaces I

Construction of RKHS

By the completion of the space generated by the linear
combinations of K (x, xi ):

f (x) =
∑m

i=1 αik(x, xi ).

Hyperplanes on the RKHS

f (x) =
∑m

i=1 αik(x, xi ) =
∑m

i=1 αiΦ(x)Φ(xi ) = wT Φ(x),

f (x) = 0 ⇒ Hiperplane on the transformed space.
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SVM as regularization method I

The SVM minimize the risk functional

F (f ) =
1

n

n∑
i=1

L(yi , f (xi )) + µΩ(f ) ,

given a loss function and a hypothesis space:

SVM

Loss function: hinge loss: L(f (xi ), yi ) = (1− yi f (xi ))+, with
(x)+ = max(x, 0).

Hypothesis space: RKHS of reproducing kernel K .
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SVM as regularization method II

Problem to solve

min
f ∈Hk

1

n

n∑
i=1

(1− yi f (xi ))+ + µ‖f ‖2
K .

¿Everything works?

{f ∈ HK : ‖f ‖2
K ≤ (supy∈Y L(y , 0))/µ}

Compact hypothesis space.
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Solution to the regularization problem I

Solution to the regularization problem

By the Representer theorem,

f (x) =
n∑

i=1

αiK (xi , x) + b,

where the constant b can be added without lost of generality.
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Problem y and solution of the SVM I

Regularization problem

min
f ∈Hk

1

n

n∑
i=1

(1− yi f (xi ))+ + µ‖f ‖2
K .

Reformulated problem

min
w,b

1

2
‖w‖2

2 + C
n∑

i=1

ξi

s.a. yi

(
wT Φ(xi ) + b

)
≥ 1− ξi , ∀i = 1, . . . , n ,

ξi ≥ 0 ∀i = 1, . . . , n ,
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Problem y and solution of the SVM II

Dual of the reformulated problem

max
α

n∑
i=1

αi − 1
2

n∑
i ,j=1

αiαjyiyjK (xi , xj)

s.a. 0 ≤ αi ≤ C
n∑

i=1
αiyi = 0 .

Solution to the dual problem

D∗(x) = (w∗)T Φ(x) + b∗ =
n∑

i=1

λ∗i yiK (x, xi ) + b∗.
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Support Vector Machines

Geometrical Point of view

Geometrical Idea

Steps of the SVM

1 Data transformation onto a high dimensional space by the use
of kernels.

2 Solution to the problem by the maximization of the margin
between the classes.
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Support Vector Machines

Geometrical Point of view

Data transformation

Searching for linearity

First, the data are mapped into an space (generally of high
dimension) bye the use of a kernel.

K (x, y) =< Φ(x),Φ(y) >
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Support Vector Machines

Geometrical Point of view

Hyperplane of maximum separation between the classes

Criteria for searching the hyperplane

Infinite feasible hyperplanes ⇒ To maximize the margin between
the classes.

Problem to solve

min
w,b

1

2
‖w‖2

2

s.a. yi

(
wT Φ(xi ) + b

)
≥ 1 ∀i = 1, . . . , n .
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Support Vector Machines

Geometrical Point of view

Maximun separating hyperplane

Problem

If under Φ the problem does not become linearly separable ⇒
Penalization of the misclassified observations.

Problema

min
w,b

1

2
‖w‖2

2 + C
n∑

i=1

ξi

s.a. yi

(
wT Φ(xi ) + b

)
≥ 1− ξi ,

∀i = 1, . . . , n ,
ξi ≥ 0
∀i = 1, . . . , n ,
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Open problems New lines of research

Open Problems

Open Problems

Open Problems

Kernel election.

Parameter tuning.

Objetive

Study and selection of the best kernel in classification problems.
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Open problems New lines of research

Open Problems

Spirals

(e) Linear. (f) Pol. gr. 2. (g) Pol. gr. 3. (h) RBFσ=0.1.

(i) RBFσ=0.5. (j) RBFσ=1. (k) RBFσ=2. (l) RBFσ=10.
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Open problems New lines of research

The Idea of kernel combination

Why kernel combinations?

Since...

Any definite positive matrix is a Mercer kernel and can be used for
training a SVM.

...then

It make sense to work with kernel combinations when the final
matrix is positive definite.
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Open problems New lines of research

The Idea of kernel combination

Combining kernels

By using Semidefinite programming (Lanckriet)

M∑
m=1

µmKm .

Mart́ın, Muñoz, Moguerza kernel combinations

K ∗ = K̄ + τY
∑
i<j

g(Ki − Kj)Y .

K ∗ =
∑

i

Wi ⊗ Ki .
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Open problems New lines of research

The Idea of kernel combination

Comparative study

Comparative study for the cancer data set by using three kernels:
lineal, polinomial y exponencial.

Error Error % Support
Method Train Test Vectors

Polinomial 0.1 (0.1) 7.8 (2.5) 8.3 (0.8)
RBF 0.0 (0.0) 10.8 (1.7) 65.6 (1.0)
Linear 2.6 (0.5) 3.7 (1.8) 7.1 (0.8)

AV 2.4 (0.3) 3.1 (1.3) 2.9 (0.4)
SDP 0.0 (0.0) 6.2 (1.6) 65.5 (1.9)
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Open problems New lines of research

Information and Geometry

Combinations, is that all?

Kernel combination can be improved taking into account the
geometrical structure of the problem:

Solution

Local data structure

Global data geometry
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Recent advances

Combinations based on local data features

Motivation

SVMs and the Bayes Risk

Linear SVMs are optimal in the classical setting in which two
normally distributed populations have to be separated.

The support vector machine error converges to the optimal
Bayes risk. and approaches the optimal Bayes rule (Lin,
2002), (Moguerza and Muñoz, 2006).

Local Linear Approximation for Kernel Methods: The Railway
Kernel. Alberto Muñoz, Javier González and Isaac Mart́ın de
Diego. CIARP 2006: 936-944
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Recent advances

Combinations based on local data features

Objetive

Objetive

To build a global kernel for general nonlinear classification
problems that locally behaves as a linear (optimal) kernel.
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Recent advances

Combinations based on local data features

Indicator functions

Indicator kernel functions.

λ(x) =

{
1 if‖x − c‖1/2 ≤ r

e−γ(‖x−c‖2−r2) if‖x − c‖1/2 > r

Example
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Recent advances

Combinations based on local data features

Two areas problem

Solution

Kernel K1 solves the classification problem in area A1 and so does
K2 in area A2.
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Recent advances

Combinations based on local data features

Kernel and solution

Railway kernel for a two areas problem

We define:

H1(x , y) = λ1(x)λ1(y)

H2(x , y) = λ2(x)λ2(y)

The global Railway Kernel KR as follows:

KR(x , y) = H1(x , y)K1(x , y) + H2(x , y)K2(x , y) .

Solution

f (x) =
∑

xi∈A1

αiK1(x , xi ) +
∑

xj∈A2

αjK2(x , xj) + b
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Recent advances

Combinations based on local data features

Solution for the two areas problem

Example

(o) Railway kernel solu-
tion

(p) RBF kernel solution
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Combinations based on local data features

Intersections

Intersections

Areas where both kernels achieve the same performance, and
should be equally weighted.

Average of the kernels
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Recent advances

Combinations based on local data features

Good properties of the railway kernel

Non tuning parameter dependence.

Simple solution (locally optimal).

Low dimension of the feature space.

Small number of support vector (high generalization
capability).



Kernel combination in SVMs for classification purposes: Geometry and Information

Recent advances

Combinations based on local data features

Areas Location

Before constructing the kernel ⇒ Areas identification

A two steps algorithm is used:

1 Single labeled areas are created.

2 Final areas are obtained joining the nearest areas with
different labels.



Kernel combination in SVMs for classification purposes: Geometry and Information

Recent advances

Combinations based on local data features

Data description

The data set consists of 400 points in IR2.

Two main areas are created with different dispersion matrix.

We use 80% of the data for training and 20% for testing.

Several RBFs were compared with the railway kernel results.

In SVM1 the parameter σ is chosen as a function of the data
dimension For SVM2 we follow the heuristic proposed in
(Keethi, 2003).
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Recent advances

Combinations based on local data features

Simulated data

Simulated data representation

Two areas with different scattering matrices. The first area center
is (0, 1) and the second area center is (1, 1). The areas do not
coincide with the classes {−1,+1}.
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Combinations based on local data features

Simulated data results

Results
Percentage of missclassified data and percentage of support
vectors for the two different scattering data set: A1 stands for the
less scaterring group, A2 stands for the most dispersive one.

Train Test Support
Error Error Vectors

Method Total A1 A2 Total A1 A2 Total

RBFσ=0.5 2.4 3.0 0.0 13.4 4.1 51.0 39.2
RBFσ=5 4.6 5.8 0.0 13.6 8.6 35.0 82.6
RBFσ=10 29.1 36.2 0.5 36.0 44.1 10.0 94.4

Railway Kernel 3.7 3.6 15.6 4.2 0.1 20.6 14.1
SVM1 2.1 2.6 0.0 13.5 4.1 51.0 39.6
SVM2 2.1 2.6 0.0 11.0 3.3 41.5 37.6
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Combinations based on local data features

Experiment description

The data set consists of 683 observations with 9 features each.

We use 80% of the data for training and 20% for testing.

Several RBFs were compared with the railway kernel results.
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Combinations based on local data features

Breast Cancer data set

Example

Percentage of missclassified data, sensitivity (Sens.), specificity
(Spec.) and percentage of support vectors for the cancer data set.
Standard deviations in brackets.

Train Test Support
Method Error Sens. Spec. Error Sens. Spec. Vectors

Railway Kernel 2.5 (0.3) 0.979 0.974 2.9 (0.4) 0.975 0.876 18.6 (3.6)
SVM1 0.1 (0.1) 1.000 0.999 4.2 (1.4) 0.989 0.942 49.2 (1.0)
SVM2 0.0 (0.0) 1.000 0.999 2.9 (1.6) 0.963 0.975 49.2 (1.0)
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Other recent advances

New published Advances

Springer. ICANN 2007.

Spectral Measures for kernel matrices comparison. Javier
González and Alberto Muñoz.

New similarity measure for kernel matrices based on the definition
on matrix pencils and simultaneous diagonalization.

Springer. CIARP 2007. (Submitted)

Joint Diagonalization of Kernels for Information Fusion.
Alberto Muñoz and Javier Gonzalez.

Analysis and solutions to possible redundances in the kernel fusion
process.
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