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The world is an uncertain place



What do we understand by uncertainty?

Result of a live game Result of a recorded game

Aleatoric uncertainty Epistemic uncertainty

Uncertainty is lack of knowledge



How do we quantify uncertainty?

Probability is the universal language of (any) uncertainty

Two simple rules:

I Sum rule: p(x) =
∑

y p(x , y)

I Product rule: p(x , y) = p(y |x)p(x)

p(θ|Data) =
p(Data|θ)p(θ)

p(Data)

for θ some unknown latent quantity and Data (observables).
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1. Probability helps to model any source of uncertainty



Outline of the lecture

I Part I: Introduction to Gaussian processes

I Basic description of Gaussian processes.

I Gaussian processes with non Gaussian likelihoods.

I Functional point of view on Gaussian processes and
connections.

I Deep Gaussian processes.

I Part II: Decision making under uncertainty

I General framework for decision making.

I Bayesian optimization.

I Bayesian quadrature.

I Experimental design.



The Gaussian distribution

ϕµ,σ2(y) =
1√
2πσ2

e
− (y−µ)2

2σ2

Why is it so famous? Why does it have this shape?



Why the Gaussian?

I Central limit theorem: Sums of independent random
variables with finite mean and variance are asymptotically
Gaussian.

I Maximum entropy: The Gaussian has maximum entropy
relative to all probability distributions covering the entire real
line with finite mean and variance.

I The Laplace approximation: Uses the Taylor expansion to
approximate an arbitrary distribution at the mode.

I Linear algebra: Computations with the Gaussian are linear
algebra operations.
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1. Probability helps to model any source of uncertainty

2. The Gaussian appears in many operations in science



Two important Gaussian properties

Sum of Gaussians

I Sum of independent Gaussian variables is also Gaussian.

yi ∼ N
(
µi , σ

2
i

)
And the sum is distributed as

n∑
i=1

yi ∼ N

(
n∑

i=1

µi ,

n∑
i=1

σ2i

)

(Aside: The central limit theorem also holds.)



Two Important Gaussian properties

Scaling a Gaussian

I Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)
And the scaled density is distributed as

wy ∼ N
(
wµ,w2σ2

)



Two dimensional Gaussian

I Consider height, h/m and weight, w/kg .

I Could sample height from a distribution:

p(h) ∼ N (1.7, 0.0225)

I And similarly weight:

p(w) ∼ N (75, 36)



Height and weight models
p

(h
)

h/m

p
(w

)

w/kg

Gaussian distributions for height and weight.



Sampling two dimensional variables

Joint Distribution
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Independence assumption

I This assumes height and weight are independent.

p(h,w) = p(h)p(w)

I In reality they are dependent (body mass index) = w
h2

.
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Independent Gaussians

p(w , h) = p(w)p(h)

p(w , h) =
1√

2πσ21

√
2πσ22

exp

(
−1

2

(
(w − µ1)2

σ21
+

(h − µ2)2

σ22

))

p(w , h) =
1

2πσ1σ2
exp

(
−1

2

([
w
h

]
−
[
µ1

µ2

])> [
σ2
1 0

0 σ2
2

]−1([
w
h

]
−
[
µ1

µ2

]))

p(y) =
1

2π |D|
1
2

exp

(
−1

2
(y − µ)>D−1(y − µ)

)
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Independent Gaussians
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Correlated Gaussian

Form a correlated Gaussian from original by rotating the data
space using matrix R.

p(y) =
1

2π |D|
1
2

exp

(
−1

2
(y − µ)>D−1(y − µ)

)



Correlated Gaussian

Form a correlated Gaussian from original by rotating the data
space using matrix R.

p(y) =
1

2π |RDRT |
1
2

exp

(
−1

2
(R>y − R>µ)>D−1(R>y − R>µ)

)



Correlated Gaussian

Form a correlated Gaussian from original by rotating the data
space using matrix R.

p(y) =
1

2π |RDRT |
1
2

exp

(
−1

2
(y − µ)>RD−1R>(y − µ)

)
this gives a covariance matrix:

C = RDR>

C−1 = RD−1R>



Correlated Gaussian

Form a correlated Gaussian from original by rotating the data
space using matrix R.

p(y) =
1

2π |C|
1
2

exp

(
−1

2
(y − µ)>C−1(y − µ)

)
this gives a covariance matrix:

C = RDR>

C−1 = RD−1R>



Recall univariate Gaussian properties

1. Sum of Gaussian variables is also Gaussian.

yi ∼ N
(
µi , σ

2
i

)
n∑

i=1

yi ∼ N

(
n∑

i=1

µi ,

n∑
i=1

σ2i

)

2. Scaling a Gaussian leads to a Gaussian.

y ∼ N
(
µ, σ2

)
wy ∼ N

(
wµ,w2σ2

)



Multivariate consequence

I If
x ∼ N (µ,Σ)

I And
y = Wx

I Then
y ∼ N

(
Wµ,WΣW>

)
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Sampling a multivariate Gaussian

f ∼ N (0,Σ)

Multivariate Gaussians

I We will consider a Gaussian with a particular structure of
covariance matrix.

I Generate a single sample from this 25 dimensional Gaussian
distribution, f = [f1, f2 . . . f25].

I We will plot these points against their index.



Gaussian distribution sample
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Figure: A sample from a 25 dimensional Gaussian distribution.



1. Probability helps to model any source uncertainty

2. The Gaussian appears in many operations in science

3. Correlations are key in the samples from the Gaussian



Gaussian processes

A Gaussian process (GP) is an infinite-dimensional probability
density, such that each linear finite-dimensional restriction is

multivariate Gaussian.

I Generalization of the multivariate Gaussian to functional
spaces.

I Finite collections of variables of Gaussian processes are
Gaussian.



Book: Gaussian processes for machine learning

The Gaussian processes book: Rasmussen and Williams, 2006



Gaussian process history

I Geostatistics: Kriging 1970s, normally used in
spatio-temporal modelling.

I Spatial statistics: Cressie [1993] for overview.

I Time series: Wiener, Kolmogorov 1940s.

I Uncertainty quantification/computer experiments:
OHagan [1978], Sacks et al. [1989].

I Signal processing: Kalman filter is a particular representation
of a Gaussian process. See work of Simo Sarkka.



Gaussian processes for regression

I Set of inputs X = {x1, x2, ..., xN} corresponding set of random
function variables f = {f1, f2, . . . , fN}.

I GP: Any set of function variables {fn}Ni=1 has joint (zero
mean) Gaussian distribution

p(f|X) ∼ N (0,K ) .

I In principle, the density of the inputs is not modelled.



Covariance functions

Where does the covariance (kernel) matrix K comes from?

I The covariance function K represents how we believe the
f (xi ) and f (xj) are correlated given xi and xj .

I The covariance matrix K has elements Kij = K (xi , xj).

I K must be positive semi-definite, aTKa ≥ 0



Covariance functions

Linear covariance function

k
(
x, x′

)
= αx>x′

I Bayesian linear regression.

α = 1
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Covariance functions

MLP covariance function

k
(
x, x′

)
= αasin

(
wx>x′ + b

√
wx>x + b + 1

√
wx′>x′ + b + 1

)

I Based on infinite neural
network model.

w = 40

b = 4
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Covariance functions
Where did this covariance matrix come from?

Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance
function

k
(
x, x′

)
= α exp

(
−|x− x′|

2`2

)
I One dimension: arises

from a stochastic
differential equation
(Brownian motion in a
parabolic tube).

I Higher dimensions:
Fourier filter of the form

1
π(1+x2)

.
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Covariance functions
Where did this covariance matrix come from?

Markov process

k
(
t, t ′
)

= αmin(t, t ′)

I Covariance matrix is built
using the inputs to the
function t.
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Covariance functions
Where did this covariance matrix come from?

Matern 5/2 covariance function

k
(
x, x′

)
= α

(
1 +
√

5r +
5

3
r2
)

exp
(
−
√

5r
)

where r =
‖x− x′‖2

`

I Matern 5/2 is a twice
differentiable covariance.

I Matern family constructed
with Student-t filters in
Fourier space.



Covariance functions
Where did this covariance matrix come from?

Matern 5/2 covariance function
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Covariance functions

RBF basis functions

k
(
x, x′

)
= αφ(x)>φ(x′)

φk(x) = exp

(
−
‖x − µk‖22

`2

)

µ =

−1
0
1





Covariance functions

RBF basis functions

k
(
x, x′

)
= αφ(x)>φ(x′)

φk(x) = exp

(
−
‖x − µk‖22

`2

)

µ =

−1
0
1


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Covariance functions
Where did this covariance matrix come from?

Exponentiated quadratic kernel function (RBF, squared
exponential, Gaussian)

k
(
x, x′

)
= α exp

(
−
‖x− x′‖22

2`2

)

I Covariance matrix built
using the inputs to the
function x.

I Example above: based on
Euclidean distance.

I The covariance function
a.k.a kernel.
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1. Probability helps to model any source of uncertainty.

2. The Gaussian appear in many operations in science.

3. Correlations are key in the samples from the Gaussian.

4. Gaussian processes are distributions over functions.



Constructing covariance functions

I Sum of two covariances is also a covariance function.

k(x, x′) = k1(x, x′) + k2(x, x′)



Constructing covariance functions

I Product of two covariances is also a covariance function.

k(x, x′) = k1(x, x′)k2(x, x′)



Multiply by deterministic function

I If f (x) is a Gaussian process.

I g(x) is a deterministic function.

I h(x) = f (x)g(x)

I Then
kh(x, x′) = g(x)kf (x, x′)g(x′)

where kh is covariance for h(·) and kf is covariance for f (·).



1. Probability helps to model any source of uncertainty.

2. The Gaussian appear in many operations in science.

3. Correlations are key in the samples from the Gaussian.

4. Gaussian processes are distributions over functions.

5. New covariances can be derived from old ones.



Prediction with correlated Gaussians

yi = f (xi )

I Training input and output pairs (X, y), and test inputs x∗.

I Prediction of f∗ from f: multivariate conditional density.

I Here the joint density is given by p(f, f∗|X) ∼ N (0,K )

K =

[
Kf,f K∗,f
Kf,∗ K∗,∗

]

I Multivariate conditional density is also Gaussian.

p(f∗|f) = N
(
f∗|K∗,fK−1f,f f,K∗,∗ −K∗,fK

−1
f,f Kf,∗

)



Prediction with correlated Gaussians

yi = f (xi )

I Training input and output pairs (X, y), and test inputs x∗.

I Prediction of f∗ from f: multivariate conditional density.

I Here the joint density is given by p(f, f∗|X) ∼ N (0,K )

K =

[
Kf,f K∗,f
Kf,∗ K∗,∗

]

I Multivariate conditional density is also Gaussian.

p(f∗|f) = N (f∗|µ,Σ)

µ = K∗,fK
−1
f,f f

Σ = K∗,∗ −K∗,fK
−1
f,f Kf,∗



Gaussian process interpolation
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Figure: Interpolation through outputs from slow computer simulations
(e.g. atmospheric carbon levels).
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Prediction with noisy observations

yi = f (xi ) + εi

I Gaussian noise model,

p (yi |fi ) = N
(
yi |fi , σ2

)
where σ2 is the variance of the noise.

I Equivalent to a covariance function of the form

k(xi , xj) = δi ,jσ
2

where δi ,j is the Kronecker delta function.

I Additive nature of Gaussians means we can simply add this
term to existing covariance matrices.

Cov(yi , yj) = k(xi , xj) + δi ,jσ
2



Prediction with noisy observations

I Training input and output pairs (X, y), and test inputs x∗.

I Distribution of the observed target values and the function
values at the test location p(y, f∗) ∼ N (0,K )

K =

[
Kf,f + σ2I K∗,f

Kf,∗ K∗,∗

]

I Multivariate conditional density is also Gaussian.

p(f∗|X, y, x∗) = N
(

f∗|K∗,fK̃f,ff,K
−1
∗,∗ − K̃f,fKf,∗

)
K̃f,f = Kf,f + σ2I



Prediction with noisy observations

I Training input and output pairs (X, y), and test inputs x∗.

I Distribution of the observed target values and the function
values at the test location p(y, f∗) ∼ N (0,K )

K =

[
Kf,f + σ2I K∗,f

Kf,∗ K∗,∗

]

I Multivariate conditional density is also Gaussian.

p(f∗|X, y, x∗) = N (f∗|µ,Σ)

K̃f,f = Kf,f + σ2I

µ = K∗,fK̃
−1
f,f f

Σ = K∗,∗ −K∗,fK̃
−1
f,f Kf,∗



Predictions for y∗ with Gaussian likelihoods

Training input and output pairs (X, y), and test input x∗.

Model:
yi = f (xi ) + εi

f ∼ GP(f |0,K )

εi ∼ N (εi |0, σ2)

Likelihood:

p(y|X, f ) =
n∏

i=1

p(yi |f , xi )

Predictions:

p(y∗|x∗,X, y) =

∫
p(y∗|x∗, f ,X, y)p(f |X, y)df



Predictions for y∗ with Gaussian likelihoods

Training input and output pairs (X, y), and test input x∗.

Model:
yi = f (xi ) + εi

f ∼ GP(f |0,K )

εi ∼ N (εi |0, σ2)

Likelihood:

p(y|X, f ) =
n∏

i=1

p(yi |f , xi )

Predictions:

p(y∗|x∗,X, y) = N
(
y∗|µ,Σ + σ2

)



Gaussian process regression
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Figure: Fitting through outputs (with noise) from slow computer
simulations (e.g. atmospheric carbon levels).
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Considerations

I GPs allows to characterize and quantify uncertainty about f .

I The mean of the GP is a linear predictor: µ = K∗,fα.

I The inversion of K̃f,f = Kf,f + σ2I costs O(N3).

I The prediction cost per new point is O(N2).



1. Probability helps to model any source of uncertainty.

2. The Gaussian appear in many operations in science.

3. Correlations are key in the samples from the Gaussian.

4. Gaussian processes are distributions over functions.

5. New covariances can be derived from old ones.

6. Prediction in GPs are linear algebra operations.



Questions at this point

I Given a covariance (prior), how to select the right
parameters?

I How to deal with non Gaussian likelihoods?

I How is this representation of the GP related to a basis
function representation (and therefore conected to splines,
NNs, etc)?



Learning covariance parameters
Can we determine covariance parameters from the data?

I Advantage of GPs: hyperparameters and covariances can be
chonse directly from the training data (no cross validation).

I Minimize the negative log-marginal likelihood L(θ) w.r.t
kernel hyper paremeters and noise, K(θ) = K + σ2I .

p(y|X) =

∫
p(y|f ,X)p(f )df ∼ N (y|0,K(θ))

N (y|0,K(θ)) =
1

(2π)
n
2 |K(θ)|

1
2

exp

(
−y>K(θ)−1y

2

)
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Learning covariance parameters
Can we determine covariance parameters from the data?

I Advantage of GPs: hyperparameters and covariances can be
chonse directly from the training data (no cross validation).

I Minimize the negative log-marginal likelihood L(θ) w.r.t
kernel hyper paremeters and noise, K(θ) = K + σ2I .

p(y|X) =

∫
p(y|f ,X)p(f )df ∼ N (y|0,K(θ))

L(θ) = − logN (y|0,K(θ)) =
1

2
log |K(θ)|+y>K(θ)−1y

2
+

n

2
log 2π



Learning covariance parameters
Can we determine length scales and noise levels from the data?
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1. Probability helps to model any source of uncertainty.

2. The Gaussian appear in many operations in science.

3. Correlations are key in the samples from the Gaussian.

4. Gaussian processes are distributions over functions.

5. New covariances can be derived from old ones.

6. Prediction in GPs are linear algebra operations.

7. Marginal likelihood as objective for training. No CV.



Non Gaussian likelihoods
Gaussian processes for classification as example

Training input and output pairs (X, y), where yi ± 1.

Model:

I Sigmoidal likelihood: p(y = +1|f , x) = σ(f (x)).

I Prior over f : f ∼ GP(f |0,K ).

Predictive for f∗:

p(f∗|X, y, x∗) =

∫
p(f∗|X, x∗, f)p(f|X, y)df

where p(f|X, y) = p(y|f)p(f|X)/p(y|X) is the posterior over f .

Predictive for y∗:

p(y∗ = +1|X, y, x∗) =

∫
σ(f∗)p(f∗|X, y, x∗)df∗
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Non Gaussian likelihoods
Gaussian processes for classification as example

Training input and output pairs (X, y), where yi ± 1.

Model:

I Sigmoidal likelihood: p(y = +1|f , x) = σ(f (x)).

I Prior over f : f ∼ GP(f |0,K ).

Predictive for f∗:

p(f∗|X, y, x∗) =

∫
p(f∗|X, x∗, f)p(f|X, y)df

where p(f|X, y) = p(y|f)p(f|X)/p(y|X) is the posterior over f .

Predictive for y∗:

p(y∗ = +1|X, y, x∗) =

∫
σ(f∗)p(f∗|X, y, x∗)df∗



Approximations

p(f|X, y) = p(y|f)p(f|X)/p(y|X) is intractable.

Two common ways to make Gaussian approximation to posterior:

I Laplace approximation: Uses the second order Taylor
approximation at the mode of the posterior.

I Expectation propagation: Can be studied as of as
approximately minimizing KL[p(f|X, y)||q(f|X, y)] by an
iterative procedure for some simple form of q(f|X, y).



Example
Data from two classes



Example
Latent function after optimization



Example
Warped latent function after optimization



1. Probability helps to model any source of uncertainty.

2. The Gaussian appear in many operations in science.

3. Correlations are key in the samples from the Gaussian.

4. Gaussian processes are distributions over functions.

5. New covariances can be derived from old ones.

6. Prediction in GPs are linear algebra operations.

7. Marginal likelihood as objective for training. No CV.

8. Non Gaussian likelihoods require approximations.



GPs: basis of functions point of view

I GPs can be seen as a generalization of Bayesian linear
regression with infinite number of basis.

I Next we review this connection.



Basis function representations

I Represent a function by a linear sum over a basis,

f (xi ; w) =
m∑

k=1

wkφk(xi ),

.

I Here: m basis functions and φk(·) is kth basis function and

w = [w1, . . . ,wm]> .

I For standard linear model: φk(xi ) = xi .



Random functions

Functions derived using f (x) =
∑m

k=1 wkφk(x) where elements of
w are independently sampled from a Gaussian density,

wk ∼ N (0, α) .
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Direct construction of covariance matrix

Use matrix notation to write function,

f (xi ; w) =
m∑

k=1

wkφk (xi ) .



Direct construction of covariance matrix

Use matrix notation to write function,

f (xi ; w) =
m∑

k=1

wkφk (xi ) .

I Computed at training data gives a vector f = Φw.

I w and f are only related by an inner product.

I Φ ∈ <n×p is a design matrix (fixed and non-stochastic for a
given training set).



Expectations

I We have
E[f] = ΦE[w].

I Prior mean of w was zero giving

E[f] = 0.

I Prior covariance of f is

K = E[ff>]− E[f]E[f]> = E[ff>]
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Expectations

I We have
E[f] = ΦE[w].

I Prior mean of w was zero giving

E[f] = 0.

I Prior covariance of f is

K = E[ff>]− E[f]E[f]> = E[ff>]

E[ff>] = ΦE[ww>]Φ>,

giving
K = αΦΦ>.



Radial basis functions
Basis function maps data into a “feature space” in which a linear
sum is a non linear function

φk (xi ) = exp

(
−|xi − µk |2

2`2

)
.
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Figure: A set of radial basis functions with width ` = 2 and location
parameters µ = [−4 0 4]>.



Covariance between two points

I The prior covariance between two points xi and xj is

k (xi , xj) = αφ (xi )
> φ (xj) ,

or in sum notation

k (xi , xj) = α

m∑
k=1

φk (xi )φk (xj)

I For the radial basis used this gives

k (xi , xj) = α
m∑

k=1

exp

(
−
|xi − µk |2 + |xj − µk |2

2`2

)
.



Covariance between two points

I The prior covariance between two points xi and xj is

k (xi , xj) = αφ (xi )
> φ (xj) ,

or in sum notation

k (xi , xj) = α

m∑
k=1

φk (xi )φk (xj)

I For the radial basis used this gives

k (xi , xj) = α

m∑
k=1

exp

(
−
|xi − µk |2 + |xj − µk |2

2`2

)
.



Covariance functions

RBF basis functions

k
(
x, x′

)
= αφ(x)>φ(x′)

φk(x) = exp

(
−
‖x − µk‖22

`2

)

µ =

−1
0
1





Covariance functions

RBF basis functions

k
(
x, x′

)
= αφ(x)>φ(x′)

φk(x) = exp

(
−
‖x − µk‖22

`2

)

µ =

−1
0
1


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Selecting number and location of basis

I Need to choose (1D input here):

1. location of centers.

2. number of basis functions.

I Consider uniform spacing over a region:

k (xi , xj) = αφ(xi )
>φ(xj)
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Selecting number and location of basis

I Need to choose (1D input here):

1. location of centers.

2. number of basis functions.

I Consider uniform spacing over a region:

k (xi , xj) = α

m∑
k=1

exp

(
−
x2i + x2j − 2µk (xi + xj) + 2µ2k

2`2

)
.



Uniform basis functions

Set each center location to µk = a + ∆µ · (k − 1) and specify the
basis functions in terms of their indices.

k (xi , xj) =α′∆µ
m∑

k=1

exp

(
−

x2i + x2j
2`2

−
2 (a + ∆µ · (k − 1)) (xi + xj) + 2 (a + ∆µ · (k − 1))2

2`2

)
.

We’ve scaled variance of process by ∆µ.



Infinite basis functions

Take µ1 = a and µm = b so b = a + ∆µ · (m − 1), which implies
b − a = ∆µ(m − 1) and therefore

m =
b − a

∆µ
+ 1

Take limit as ∆µ→ 0 so m→∞

k(xi , xj) = α′
∫ b

a

exp

(
−
x2i + x2j

2`2
+

2
(
µ− 1

2 (xi + xj)
)2 − 1

2 (xi + xj)
2

2`2

)
dµ,

where we have used a + k ·∆µ→ µ.



Result

Performing the integration leads to

k(xi ,xj) = α′
√
π`2 exp

(
−

(xi − xj)
2

4`2

)

× 1

2

[
erf

((
b − 1

2 (xi + xj)
)

`

)
− erf

((
a− 1

2 (xi + xj)
)

`

)]
,

Now take limit as a→ −∞ and b →∞

k (xi , xj) = α exp

(
−

(xi − xj)
2

4`2

)
.

where α = α′
√
π`2.



Infinite feature space

I An RBF model with infinite basis functions is a Gaussian
process.

I The covariance function is given by the exponentiated
quadratic covariance function.

k (xi , xj) = α exp

(
−

(xi − xj)
2

4`2

)
.

I Similar results can obtained for multi-dimensional input
models.

I In many cases is easier to work with the kernel than with the
basis.



1. Probability helps to model any source of uncertainty.

2. The Gaussian appear in many operations in science.

3. Correlations are key in the samples from the Gaussian.

4. Gaussian processes are distributions over functions.

5. New covariances can be derived from old ones.

6. Prediction in GPs are linear algebra operations.

7. Marginal likelihood as objective for training. No CV.

8. Non Gaussian likelihoods require approximations.

9. An RBF model with infinite basis in as GP.



Limitations of Gaussian processes

I Inference is O(n3) due to matrix inverse (in practice use
Cholesky).

I Gaussian processes don’t deal well with discontinuities
(financial crises, phosphorylation, collisions, edges in images).

I Widely used exponentiated quadratic covariance (RBF) can be
too smooth in practice (but there are many alternatives!).



Extensions

I Large scale GPs (large N). Nystron approximations, Sparse
GPs, Fourier features.

I Unsupervised learning: We don’t observe X. Gaussian Process
Latent variable models.

I Multiple outputs/fidelities. Dealing simultaneously with
several correlated outputs.

I Deep Gaussian processes. Convolution of stochastic
processes. Useful to deal with non-stationary signals,
discontinuities, etc.



Extensions

I Large scale GPs (large N). Nystron approximations, Sparse
GPs, Fourier features.

I Unsupervised learning: We don’t observe X. Gaussian Process
Latent variable models.

I Multiple outputs/fidelities. Dealing simultaneously with
several correlated outputs.

I Deep Gaussian processes. Convolution of stochastic
processes. Useful to deal with non-stationary signals,
discontinuities, etc.



Extensions

I Large scale GPs (large N). Nystron approximations, Sparse
GPs, Fourier features.

I Unsupervised learning: We don’t observe X. Gaussian Process
Latent variable models.

I Multiple outputs/fidelities. Dealing simultaneously with
several correlated outputs.

I Deep Gaussian processes. Convolution of stochastic
processes. Useful to deal with non-stationary signals,
discontinuities, etc.



Extensions

I Large scale GPs (large N). Nystron approximations, Sparse
GPs, Fourier features.

I Unsupervised learning: We don’t observe X. Gaussian Process
Latent variable models.

I Multiple outputs/fidelities. Dealing simultaneously with
several correlated outputs.

I Deep Gaussian processes. Convolution of stochastic
processes. Useful to deal with non-stationary signals,
discontinuities, etc.



Deep Gaussian processes



Deep Gaussian processes
Damianou and Lawrence, [2013]

I Stochastic process resulting of composing several Gaussian
process.

I Good for model non-stationary processes.

I The expressive power of a deep GP is significantly greater
than that of a standard GP because the successive warping of
latent variables.

I Active area of research.



Deep Gaussian processes

L layers of latent variables, {Xl}Ll=1,Xl ∈ RN×Ql :

Y = f1(X1) + ε1, ε1 ∼ N (0, σ21I)

Xl−1 = fl(Xl) + εl , εl ∼ N (0, σ2l I), l = 2 . . . L

where fl(x) ∼ GP(0, kl(x , x
′)).



Connections with neural networks

I Reminder: a GP is the limit of an infinitely wide RBF
network.

I Deep GP: limit where the parametric function composition
turns into a process composition.

Deep neural network:

g(x) = V>L φL(WL−1φL−1(. . .W2φ1(U1x))),

for W,U,V matrices of parameters and φ(·) an activation.

Non-parametrically treating the stacked function composition
g(h) = V>φ(Uh): deep GP
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Inference in Deep GPs

I In a standard GPs: inference by analytically integrating f .

I In the DGPs: all the latent variables have to additionally be
integrated out:

p(Y) =

∫
p(Y|X1)

L∏
l=2

p(Xl−1|Xl)p(XL)dX1 . . . dXL.

I Use approximated inference techniques: variational inference,
Expectation Propagation (Damianou Lawrence, 2013; Bui et
al., 2015), etc.

I Requires extra parameter per data point (we using a
variational approximation).



Extensions: Variationally auto-encoded deep GPs.
Dai, Damianou, Gonzalez, and Lawrence, [2016]

I Augmenting DGP with a variationally auto-encoded inference
mechanism.

I Constrains the variational posterior distributions of latent
variables.

I This allows us to reduce the number of parameters for
optimization, which no longer grow linearly with the size of
data.



Application: faces generation and imputation



1. Probability helps to model any source of uncertainty.

2. The Gaussian appear in many operations in science.

3. Correlations are key in the samples from the Gaussian.

4. Gaussian processes are distributions over functions.

5. New covariances can be derived from old ones.

6. Prediction in GPs are linear algebra operations.

7. Marginal likelihood as objective for training. No CV.

8. Non Gaussian likelihoods require approximations.

9. An RBF model with infinite basis is a GP.

10. An non parametric treatment of NNs leads to a deep GP.



GPSS: Gaussian Process Summer School

I http://ml.dcs.shef.ac.uk/gpss/

I Next one is in Sheffield in September 2018.

http://ml.dcs.shef.ac.uk/gpss/
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