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Goal of the talk

“Civilization advances by extending the
number of important operations which

we can perform without thinking of them.”
(Alfred North Whitehead)

I To configure statistical/ML models automatically.
I To automatically design sequential experiments to

optimize physical processes.



General framework: global optimization

Consider a well behaved function f : X → R where X ⊆ RD is (in
principle) a bounded domain.

xM = arg min
x∈X

f (x).

I f is explicitly unknown (computer model, process
embodied in a physical process) and multimodal.

I Evaluations of f may be perturbed.
I Evaluations of f are (very) expensive.



Expensive functions, who doesn’t have one?
[Dai, Damianou, González, Lawrence, 2016]

Model configuration: deep models parameter tuning

I Number of layers/units per layer.
I Weight penalties, variational parameters, learning rates,

etc.



Expensive functions, who doesn’t have one?
[González, Lonworth, James and Lawrence, 2014, 2015]

Design of experiments: gene optimization

I Use mammalian cells to make protein products.
I Control the ability of the cell-factory to use synthetic DNA.

Optimize genes (ATTGGTUGA...) to best enable the
cell-factory to operate most efficiently.



What to do?

If f is L-Lipschitz continuous and we are in a noise-free domain
to guarantee that we propose some xM,n such that

f (xM) − f (xM,n) ≤ ε

we need to evaluate f on a D-dimensional unit hypercube:

(L/ε)Devaluations!

Example: (10/0.01)5 = 10e14...
... but function evaluations are very expensive!

Alternatives: random search, genetic algorithms, CMA-ES still
require many function evaluations.



Regret minimization

The goal is to make a series of x1, . . . , xN evaluations of f such
that the cumulative regret

rN =

N∑
n=1

f (xn) −N f (xM)

is minimized.

rN is minimized if we start evaluating f at xM as soon as
possible.



Probabilistic numerics approach
http://www.probabilistic-numerics.org/

1. Minimizing the regret implies to see an optimization
problem as a decision problem.

2. Decision problems can be seen as inference if we take into
account the epistemic uncertainty we have about the system
we are studying.

Probability theory is the right way to model uncertainty.



Typical situation
We have a few function evaluations

Where is the minimum of f?
Where should we take the next evaluation?



Intuitive solution
One curve



Intuitive solution
Three curves



Intuitive solution
Ten curves



Intuitive solution
Hundred curves



Intuitive solution
Many curves



Intuitive solution
Infinite curves



What just happened?

I We made some prior assumptions about f .

I Information about the minimum is now encoded in a new
function: the probability distribution pmin.

I We can use pmin (or a functional of it) to decide where to
sample next.

I Other functions to encode relevant information about the
minimum are possible, e. g. the expected loss at each
location.



Bayesian Optimization
[Mockus, 1978]

Methodology to perform global optimization of multimodal
black-box functions.

1. Choose some prior measure over the space of possible
objectives f .

2. Combine prior and the likelihood to get a posterior over the
objective given some observations.

3. Use the posterior to decide where to take the next
evaluation according to some acquisition/loss function.

4. Augment the data.

Iterate between 2 and 4 until the evaluation budget is over.



Probability measure over functions
Gaussian processes [Rasmunsen and Williams, 2006]

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.
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Probability measure over functions
Gaussian processes [Rasmunsen and Williams, 2006]

I GP is fully determined by a covariance function k(x, x′;θ)
operator.

I Regression problems: yi = f (xi) + εi.

I Marginals at any x∗ are Gaussians with mean and variance

µ(x∗|θ,D) = kθ(X∗)>[kθ + σ2I]−1y

σ2(x∗|θ,D) = kθ(x∗, x∗) − kθ(x∗)>[Kθ + σ2I]−1kθ(x∗)

whereD is available dataset.



Acquisition functions
Making use of the model uncertainty

GPs has marginal closed-form for the posterior mean µ(x∗) and
variance σ2(x∗).

I Exploration: Evaluate in places where the variance is
large.

I Exploitation: Evaluate in places where the mean is low.

Acquisition functions balance these two factors to determine
where to evaluate next.



Exploration vs. exploitation
[Borji and Itti, 2013]

Bayesian optimization explains human active search.



Information-theoretic approaches
[Hennig and Schuler, 2013; Hernández-Lobato et al., 2014]

αES(x;θ,D) , H[p(xmin|D)] − Ep(y|D,x)[H[p(xmin|D ∪ {x, y})]]



Expected Loss
[Osborne, 2010]

αEL(x;θ,D) , E[min(y∗, ymin)]



Bayesian Optimization
As a ’mapping’ between two problems

BO is an strategy to transform the problem

xM = arg min
x∈X

f (x)
unsolvable!

into a series of problems:

xn+1 = arg max
x∈X

α(x;Dn, θn)
solvable!

where now:

I α(x) is inexpensive to evaluate.
I The gradients of α(x) are typically available.
I Still need to find xn+1: gradient descent, DIRECT or other

heuristics.



Illustration of BO
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Illustration of BO



Why these ideas have been ignored for years?

I BO depends on its own (model) parameters.

I Lack of software to apply these methods as a black
optimization boxes.

I Reduced scalability in dimensions and number of
evaluations.

Practical Bayesian Optimisation of Machine Learning Algorithms.
Snoek, Larochelle and Adams. NIPS 2012

+

Other works of M. Osborne, P. Hennig, N. de Freitas, etc.



Open Software: GPyOpt
http://sheffieldml.github.io/GPyOpt/



Open Software: GPyOpt
http://sheffieldml.github.io/GPyOpt/

I Easy python interface.
I Surrogate models available: GPs, sparse GPs, deep GPs,

etc.
I MCMC integration of the acquisition functions.
I Parallel (synchronous batch) optimization.
I Constrained optimization.
I Handles continous and discrete inputs.
I More to come!

Open source code. You can contribute!



Non myopic Bayesian optimization

I Most global optimisation techniques are myopic, in
considering no more than a single step into the future.

I Relieving this myopia requires solving the multi-step
lookahead problem.

Figure: Two evaluations, if the first evaluation is made myopically,
the second must be sub-optimal.



Myopic loss (one step ahead)

Loss of evaluating f at x∗ assuming it is returning y∗:

λ(y∗) ,
{

y∗; if y∗ ≤ η
η; if y∗ > η.

where η = min{y0}, the current best found value.

The loss expectation is :

Λ1(x∗|I0) , E[min(y∗, η)] =

∫
λ(y∗)p(y∗|x∗,I0)dy∗

(I0: current informationD, θ and likelihood type).



The myopic loss has closed form

Under Gaussian likelihoods:

Λ1(x∗|I0) , η

∫
∞

η
N(y∗;µ, σ2)dy∗

+

∫ η

−∞

y∗N(y∗;µ, σ2)dy∗

= η + (µ − η)Φ(η;µ, σ2) − σ2
N(η, µ, σ2),

where we have abbreviated σ2(y∗|I0) as σ2 and µ(y∗|I0) as µ.



Looking n steps ahead

Λn(x∗|I0) =

∫
λ(yn)

n∏
j=1

p(y j|x j,I j−1)p(x j|I j−1)dy∗ . . . dyndx2 . . .dxn

I p(y j|x j,I j−1) = N
(
y j;µ(x j;I j−1), σ2(x j|I j−1)

)
: predictive

distribution of the GP at x j and

I p(x j|I j−1) = δ
(
x j − arg minx∗∈XΛn− j+1(x∗|I j−1)

)
:

optimization step.

Intractable even for a handful number of steps ahead!



Looking n steps ahead

Graphical model representing the decision process of a myopic
loss.



Relieving the myopia of Bayesian optimization

We present...

GLASSES!

Global optimisation with Look-Ahead through Stochastic Simulation
and Expected-loss Search

[González, Osborne, Lawrence, 2016]
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GLASSES
Making the approximation sparse

Idea: jointly model the epistemic uncertainty about the steps
ahead.

Render the approximation sparse by using some
p(x2, . . . , xn|I0, x∗).



GLASSES
Making the approximation sparse

Replace:

Λn(x∗|I0) =

∫
λ(yn)

n∏
j=1

p(y j|x j,I j−1)p(x j|I j−1)dy∗ . . . dyndx2 . . .dxn



GLASSES
Making the approximation sparse

With

Γn(x∗|I0) =

∫
λ(yn)p(y|X,I0, x∗)p(X|I0, x∗)dydX



GLASSES
Making the approximation sparse

Γn(x∗|I0) =

∫
λ(yn)p(y|X,I0, x∗)p(X|I0, x∗)dydX

I y = {y∗, . . . , . . . , yn} future evaluations of f .

I X the (n − 1) × q locations of the future evaluations
x2, . . . , xn.

I p(y|X,I0, x∗) is multivariate Gaussian.

I p(X|I0, x∗): distribution over the steps ahead.



GLASSES
Not easy to integrate the uncertainty in future values

Poblem: Select a good p(X|I0, x∗) is complicated (could use a
determinantal point process but still expensive).

I Instead of integrate p(X|I0, x∗) replace it by an oracle Fn(x∗)
able to predict n future locations.

I y = (y∗, . . . , yn)T: (Gaussian) outputs of f at Fn(x∗).

I Now:

Λn
(
x∗ | I0,Fn(x∗)

)
= Γn(x∗|I0,Fn(x∗)) = E

[
min(y, η)

]



Computing the value of the expected loss
Use Expectation Propagation for Gaussians densities [Cunningham and Hennig, 2011]

Use that:

E[min(y, η)] = η

∫
Rn

n∏
i=1

hi(y)N(y;µ,Σ)dy

+

n∑
j=1

∫
Rn

y j

n∏
i=1

t j,i(y)N(y;µ,Σ)dy

where hi(y) = I{yi > η} and

t j,i(y) =


I{y j ≤ η} if i=j

I{0 ≤ yi − y j} otherwise.



GLASSES: predicting the steps ahead
Oracle based on a batch BO method [Gonzalez, Dai, Hennig and Lawrence, 2016]

Can be interpreted as the MAP of a DPP.



GLASSES: loss function

The more steps remain: more explorative loss.
Automatic balance between exploration and exploitation.



Results in a benchmark of objectives

GLASSES is overal the best method.

Make sense to use GLASSES!



Application: Synthetic gene design
[González, Lonworth, James and Lawrence, 2014, 2015]

I Use mammalian cells to make protein products.
I Control the ability of the cell-factory to use synthetic DNA.

Cornerstone of modern biotechnology: Design DNA code that
will best enable the cell-factory to operate most efficiently.

Synthetic gene design



Natural cells vs. cell factories

Central dogma of systems biology

In a natural mammalian cell:

I Not all genes encode proteins of therapeutical interest.
I ’Natural’ genes are not optimized to maximize protein

production.



Natural cells vs. cell factories

Central dogma of systems biology

Current tools in synthetic biology allow to:

I control cell transcription...
I ...but it is unknown how to control cell translation and

mRNA stability.



Key question

Develop a synthetic gene design tool to
control/optimise translation



Why can we rewrite the genetic code?

I Different gene sequences may encode the same protein...
I ...but the sequence affects the synthesis efficiency.
I The codon usage is the key (codon = triplet of bases).

The genetic code is redundant:

ATGUUGACA... = ATGUUGACU...

Both genes encode the same pro-
tein.



Challenges

I Huge and structured design space: gene features
extraction.

I Unknown mechanistic model of the cell behaviour:
multioutput Gaussian processes.

I Expensive and time consuming experiments: Bayesian
Optimization.



Gene features extraction



Model as an emulator of the cell behavior

-Model inputs
Gene features (xi).

-Model outputs
Translation rates and mRNA
half-life f := ( fα, fβ).

-Model: Multi-output GP

f ≈ GP(m,K)

where K = B⊗Kin with ARD.



Bayesian Optimization principles for gene design
[González, Lonworth, James and Lawrence, 2014]

do:

1. Build a GP model as an emulator of the cell behavior.
2. Obtain a set of gene design rules (features optimization).
3. Design one/many new gene/s coherent with the design

rules.
4. Test genes in the lab (get new data).

until the gene is optimized (or the budget is over...).



Designing new genes coherent with the optimal
design rules

Simulating-matching approach:

1. Simulate genes ‘coherent’ with the target.

2. Extract features.

3. Rank synthetic genes according to their similarity with the
‘optimal’ design rules.

Ranking criterion: eval(s|x?) =
∑p

j=1 w j|x j − x?j |

I x?: optimal gene design rules.
I s, x j generated ‘synonyms sequence’ and its features.
I w j: weights of the p features.



Experiments

I Dataset in Schwanhausser et al. (2011) for 3810 genes rates.
Sequences extracted from
http:wet-labpic/www.ensembl.org.

I 250 features involving 5’UTR, 3’UTR and coding region.

I Gaussian process with ARD and coregionalized outputs.

I Synthetic genes to produce siaP.

I 10,000 random ‘synonyms sequences’ generated from each
gene.

I GPy and GPyOpt (https://github.com/SheffieldML/).



We can evaluate the gene features relevance



The model is able to predict translation rates



We can use the model to control translation
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Optimal multi-objective designs
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Wrapping up

I BO is fantastic tool for global parameter optimization in
ML and experimental design.

I The model and the acquisition function are the two most
important bits.

I Non myopic approach are needed to find good balance
between exploration and exploitation.

I Software available! Use GPyOpt!
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