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General goal of the talk

“Civilisation advances by extending the
number of important operations which

we can perform without thinking of them.”
(Alfred North Whitehead)

I Scalable BO: models + parallelisation.
I Usable BO: new users + expert users.



General framework: global optimisation

Consider a well behaved function f : X → R where X ⊆ RD is (in
principle) a bounded domain.

xM = arg min
x∈X

f (x).

I f is explicitly unknown (computer model, process
embodied in a physical process) and multimodal.

I Evaluations of f may be perturbed.
I Evaluations of f are (very) expensive.



Expensive functions, who doesn’t have one?
[Dai, Damianou, González and Lawrence, ICLR’2016]
[González et al. NIPS-ComBio 2014, 2015]

Model configuration: find learning rates, number of layers, etc

Design of experiments: Design synthetic genes that best
enable cells to scale up the production of proteins of interest.



Probabilistic numerics approach?
http://www.probabilistic-numerics.org/, Michael Osborne, Philipp Hennig

Make a series of x1, . . . , xN evaluations of f to minimise
cumulative regret

rN =

N∑
n=1

f (xn) −N f (xM)

1. Optimisation as decision: Minimise the regret.

2. Decision as inference: need to model the epistemic
uncertainty we have about f .

Probability theory to model uncertainty



Bayesian Optimisation
[Mockus, 1978]

Methodology to perform global optimisation of multimodal
black-box functions.

1. Choose some prior measure over the space of possible
objectives f .

2. Combine prior and the likelihood to get a posterior measure
over the objective given some observations.

3. Use the posterior to decide where to take the next
evaluation according to some acquisition/loss function.

4. Augment the data.

Iterate between 2 and 4 until the evaluation budget is over.



Probability measure over functions
Gaussian processes [Rasmunsen and Williams, 2006]

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.

I Fully determined by a covariance function k(x, x′;θ)
operator.

I Marginals are Gaussians with known mean and variance.
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Expected Improvement
[Jones et al, 1998]

αEI(x;θ,D) , E[max(0, ybest − y)]

Exploration vs. exploitation to determine the next evaluation.
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Why these ideas have been ignored for years?

I Lack of general software to apply these methods as a black
optimisation boxes of for experimental design.

I Reduced scalability in dimensions, number of evaluations
(parallelisation) and available models.



Usable BO: GPyOpt
http://sheffieldml.github.io/GPyOpt/

I Easy python interface (compatible with spearmint).
I Based on GPy: GPs, Sparse GPs, Warped GPs, Deep GPs,

etc.
I MCMC integration of the acquisition functions.
I Parallel (synchronous batch) optimisation.
I Constrain optimisation.
I Armed bandits optimisation.
I Handles continous and discrete inputs.
I Several acquisition optimisers.
I More to come!

Open source code (BSD-3 license). You can contribute!



Scalable BO: Parallel/batch BO
Avoiding the bottleneck of evaluating f

I Cost of f (xn) = cost of { f (xn,1), . . . , f (xn,nb)}.
I Many cores available, simultaneous lab experiments, etc.



Considerations when designing a batch

I Available pairs {(x j, yi)}ni=1 are augmented with the
evaluations of f on Bnb

t = {xt,1, . . . , xt,nb}.

I Goal: design Bnb
1 , . . . ,B

nb
m .

Notation:

I In: data setDn + GP structure (It,k in the batch context).

I α(x;In): generic acquisition function given In.



Optimal greedy batch design
Design a batch optimally is intractable

Sequential policy: Maximise:

α(x;It,k−1)

Greedy batch policy, k-th element t-th batch: Maximize:∫
α(x;It,k−1)

k−1∏
j=1

p(yt, j|xt, j,It, j−1)p(xt, j|It, j−1)dxt, jdyt, j

I p(yt, j|xt, j,It, j−1): predictive distribution of the GP.
I p(x j|It, j−1) = δ(xt, j − arg maxx∈X α(x;It, j−1)).



Available approaches
[Azimi et al., 2010; Desautels et al., 2012; Chevalier et al., 2013; Contal et al. 2013]

Bottleneck

Available methods require to iteratively update p(yt, j|x j,It, j−1)
to model the iteration between the elements in the batch: O(n3)

How to design batches reducing this cost? Local penalisation

Lipschitz continuity

| f (x1) − f (x2)| ≤ L‖x1 − x2‖p.



Interpretation of the Lipschitz continuity of f

M = maxx∈X f (x) and Brxj
(x j) = {x ∈ X : ‖x − x j‖ ≤ rx j}where

rx j =
M − f (x j)
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Probabilistic version of Brx(x)
We can do this because f (x) ∼ GP(µ(x), k(x, x′))

I rx j is Gaussian with µ(rx j) =
M−µ(x j)

L and σ2(rx j) =
σ2(x j)

L2 .

Local penalisers: ϕ(x; x j) = p(x < Brx j
(x j))

ϕ(x; x j) = p(rx j < ‖x − x j‖)
= 0.5erfc(−z)

where z = 1√
2σ2

n(x j)
(L‖x j − x‖ −M + µn(x j)).

I Reflects the size of the ‘Lipschitz’ exclusion areas.
I Approaches to 1 when x is far form x j and decreases

otherwise.



Idea to collect the batches
Without using explicitly the model.

Optimal batch: maximisation-marginalisation∫
α(x;It,k−1)

k−1∏
j=1

p(yt, j|xt, j,It, j−1)p(xt, j|It, j−1)dxt, jdyt, j

Proposal: maximisation-penalisation.

Use the ϕ(x; x j) to penalise the acquisition and predict the expected
change in α(x;It,k−1).



Local penalisation strategy
[González, Dai, Hennig, Lawrence, 2016]
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The maximization-penalisation strategy selects xt,k as

xt,k = arg max
x∈X

g(α(x;It,0))
k−1∏
j=1

ϕ(x; xt, j)

 ,
g is a transformation of α(x;It,0) to make it always positive.



Example for L = 50

L controls the exploration-exploitation balance within the batch.



Example for L = 100

L controls the exploration-exploitation balance within the batch.



Example for L = 150

L controls the exploration-exploitation balance within the batch.



Example for L = 250

L controls the exploration-exploitation balance within the batch.
We choose L̂ = maxX ‖µ∇(x∗)‖.



2D experiment with ‘large domain’

Comparison in terms of the wall clock time
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Optimisation of a fitted model for gene design

70 dimensions (gene features), emulator of the protein
production by cells.
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Support Vector Regression

I Minimisation of the RMSE on a test set over 3 parameters.
I ’Physiochemical’ properties of protein tertiary structure?
I 45730 instances and 9 continuous attributes.
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Wrapping up

I BO is fantastic tool for global parameter optimisation in
ML and experimental design.

I To parallelise BO requires modelling the interaction
between the elements in the batches to design. This can be
done without updating the model explicitly after each
batch element is collected.

I Software available! Use GPyOpt!
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