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General goal of the talk

“Civilisation advances by extending the
number of important operations which

we can perform without thinking of them.”
(Alfred North Whitehead)

» Scalable BO: models + parallelisation.

» Usable BO: new users + expert users.



General framework: global optimisation

Consider a well behaved function f : X — R where X C RP is (in
principle) a bounded domain.

Xy = arg min f(x).
xeX

» fis explicitly unknown (computer model, process
embodied in a physical process) and multimodal.

» Evaluations of f may be perturbed.

» Evaluations of f are (very) expensive.



Expensive functions, who doesn’t have one?

[Dai, Damianou, Gonzalez and Lawrence, ICLR’2016]
[Gonzélez et al. NIPS-ComBio 2014, 2015]

Model configuration: find learning rates, number of layers, etc
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Design of experiments: Design synthetic genes that best
enable cells to scale up the production of proteins of interest.




Probabilistic numerics approach?
http://www.probabilistic-numerics.org/, Michael Osborne, Philipp Hennig

Make a series of x1, ..., xy evaluations of f to minimise
cumulative regret
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1. Optimisation as decision: Minimise the regret.

2. Decision as inference: need to model the epistemic
uncertainty we have about f.

Probability theory to model uncertainty



Bayesian Optimisation
[Mockus, 1978]

Methodology to perform global optimisation of multimodal
black-box functions.

1. Choose some prior measure over the space of possible
objectives f.

2. Combine prior and the likelihood to get a posterior measure
over the objective given some observations.

3. Use the posterior to decide where to take the next
evaluation according to some acquisition/loss function.

4. Augment the data.

Iterate between 2 and 4 until the evaluation budget is over.



Probability measure over functions

Gaussian processes [Rasmunsen and Williams, 2006]

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.
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» Fully determined by a covariance function k(x, x’; 0)
operator.

» Marginals are Gaussians with known mean and variance.
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Expected Improvement
[Jones et al, 1998]

agi(x; 0, D) £ E[max(0, Ypest — ¥)]
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Exploration vs. exploitation to determine the next evaluation
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[Mustration of BO
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[Mustration of BO

Iteration 3
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[Mustration of BO
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Iteration 5
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[Mustration of BO

Iteration 6
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[Mustration of BO

Iteration 8
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[Mustration of BO

Iteration 8
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Why these ideas have been ignored for years?

» Lack of general software to apply these methods as a black
optimisation boxes of for experimental design.

» Reduced scalability in dimensions, number of evaluations
(parallelisation) and available models.



Usable BO: GPyOpt

http://sheffieldml.github.io/GPyOpt/

» Easy python interface (compatible with spearmint).

» Based on GPy: GPs, Sparse GPs, Warped GPs, Deep GPs,
etc.

» MCMC integration of the acquisition functions.
» Parallel (synchronous batch) optimisation.

» Constrain optimisation.

» Armed bandits optimisation.

» Handles continous and discrete inputs.

» Several acquisition optimisers.

» More to come!

Open source code (BSD-3 license). You can contribute!



Scalable BO: Parallel/batch BO

Avoiding the bottleneck of evaluating f

» Cost of f(x,) = costof {f(xu1), ..., f(Xunp)}-
» Many cores available, simultaneous lab experiments, etc.



Considerations when designing a batch

> Available pairs {(xj, y;)}!_, are augmented with the
evaluations of f on B/ = {x¢1, ..., X ).

> Goal: design BY",...,B,}.

Notation:
» I,: data set D, + GP structure (I, in the batch context).

» a(x; I,): generic acquisition function given 7.



Optimal greedy batch design

Design a batch optimally is intractable

Sequential policy: Maximise:

alx; It,k—l)

Greedy batch policy, k-th element t-th batch: Maximize:

k-1

f a(x; Ly x_1) H Pyt jlxtj, Lt j-1)p (e, j1 L 1, j-1)dxs, jdys, j
=1

> p(y1,jlxtj, L1,j-1): predictive distribution of the GP.
> p(xjlLj-1) = 6(xt,j — arg maxxex a(x; L4 j-1)).



Available approaches

[Azimi et al., 2010; Desautels et al., 2012; Chevalier et al., 2013; Contal et al. 2013]

Bottleneck

Available methods require to iteratively update p(y; jlx;, Zt,j-1)
to model the iteration between the elements in the batch: O(1%)

How to design batches reducing this cost? Local penalisation

Lipschitz continuity

If(x1) = fO)l < Lllxa = xallp-



Interpretation of the Lipschitz continuity of f

M = maxyey f(x) and B,x]_ (xj) = {x € X : [Ix = xjll < ry;} where

_ M- f(x)
=

N\

f(x)
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xp ¢ Brxj (xj) otherwise, the Lif;schitz condition is violated.



Probabilistic version of B, (x)
We can do this because f(x) ~ GP(u(x), k(x,x))

M-u(x;)

2(x.
> 1y, is Gaussian with u(ry,) = —— and az(rxj) = 2%

JE

Local penalisers: ¢(x;x;) = p(x ¢ B,xj (x/))

p;xj) = plrg <Ix—x;l)
0.5erfc(—z)

_ 1 T ,
whereZ—\/ZJ%_(xj)(Lllx] x| = M + un(x;))-

» Reflects the size of the ‘Lipschitz’ exclusion areas.

» Approaches to 1 when x is far form x j and decreases
otherwise.



Idea to collect the batches

Without using explicitly the model.

Optimal batch: maximisation-marginalisation

k-1

fa(xi Tir-1) H P(yt,j

j=1

Xt,j, ft,j—l)P(Xt,j

ft,j—l)dxt,jd]/t,j

Proposal: maximisation-penalisation.

Use the @(x; x;) to penalise the acquisition and predict the expected
change in a(x; Iy j_1).



Local penalisation strategy

[Gonzélez, Dai, Hennig, Lawrence, 2016]

1st batch element 2nd batch element 3th batch element
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g is a transformation of a(x; 1;) to make it always positive.



Example for L = 50

Penalized surrogate

Adaptive

o

L controls the exploration-exploitation balance within the batch.



Example for L = 100

Adaptive Penalized surrogate

L controls the exploration-exploitation balance within the batch.



Example for L = 150

Adaptive Penalized surrogate

L controls the exploration-exploitation balance within the batch.



Example for L = 250

Penalized surrogate

Adaptive

L controls the exploration-exploitation balance within the batch.
We choose L = maxx ||uv(x)I|.



2D experiment with ‘large domain’
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Optimisation of a fitted model for gene design

70 dimensions (gene features), emulator of the protein

production by cells.
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Support Vector Regression

» Minimisation of the RMSE on a test set over 3 parameters.
» "Physiochemical” properties of protein tertiary structure?

» 45730 instances and 9 continuous attributes.
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Wrapping up

» BO is fantastic tool for global parameter optimisation in
ML and experimental design.

» To parallelise BO requires modelling the interaction
between the elements in the batches to design. This can be
done without updating the model explicitly after each
batch element is collected.

» Software available! Use GPyOpt!
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