Scalable (and usable!) Bayesian Optimisation

Javier González

(with Zhenwen Dai, Philipp Hennig and Neil Lawrence)

University of Sheffield, Sheffield, UK

April 7th, 2016. SIAM-UQ, Lausanne, Switzerland.

Sheffield Institute for Translational Neuroscience

General goal of the talk

"Civilisation advances by extending the number of important operations which we can perform without thinking of them." (Alfred North Whitehead)

- Scalable BO: models + parallelisation.
- ► Usable BO: new users + expert users.

General framework: global optimisation

Consider a *well behaved* function $f : X \to \mathbb{R}$ where $X \subseteq \mathbb{R}^D$ is (in principle) a bounded domain.

$$x_M = \arg\min_{x \in \mathcal{X}} f(x).$$

- ► *f* is explicitly unknown (computer model, process embodied in a physical process) and multimodal.
- ► Evaluations of *f* may be perturbed.
- ► Evaluations of *f* are (very) expensive.

Expensive functions, who doesn't have one?

[Dai, Damianou, González and Lawrence, ICLR'2016] [González et al. NIPS-ComBio 2014, 2015]

Model configuration: find learning rates, number of layers, etc

Design of experiments: Design synthetic genes that best enable cells to scale up the production of proteins of interest.

Probabilistic numerics approach?

http://www.probabilistic-numerics.org/, Michael Osborne, Philipp Hennig

Make a series of $x_1, ..., x_N$ evaluations of f to minimise *cumulative regret*

$$r_N = \sum_{n=1}^N f(x_n) - Nf(x_M)$$

- 1. *Optimisation* as *decision*: Minimise the regret.
- 2. *Decision* as *inference*: need to model the *epistemic* uncertainty we have about *f*.

Probability theory to model uncertainty

Bayesian Optimisation [Mockus, 1978]

Methodology to perform global optimisation of multimodal black-box functions.

- 1. Choose some *prior measure* over the space of possible objectives f.
- 2. Combine prior and the likelihood to get a *posterior measure* over the objective given some observations.
- 3. Use the posterior to decide where to take the next evaluation according to some *acquisition/loss function*.
- 4. Augment the data.

Iterate between 2 and 4 until the evaluation budget is over.

Probability measure over functions

Gaussian processes [Rasmunsen and Williams, 2006]

Infinite-dimensional probability density, such that each linear finite-dimensional restriction is multivariate Gaussian.

- ► Fully determined by a covariance function $k(\mathbf{x}, \mathbf{x}'; \theta)$ operator.
- Marginals are Gaussians with known mean and variance.

Probability measure over functions

Gaussian processes [Rasmunsen and Williams, 2006]

Infinite-dimensional probability density, such that each linear finite-dimensional restriction is multivariate Gaussian.

- ► Fully determined by a covariance function $k(\mathbf{x}, \mathbf{x}'; \theta)$ operator.
- Marginals are Gaussians with known mean and variance.

Expected Improvement

[Jones et al, 1998]

$$\alpha_{EI}(\boldsymbol{x};\boldsymbol{\theta},\mathcal{D})\triangleq\mathbb{E}[\max(0,y_{best}-y)]$$

Exploration vs. exploitation to determine the next evaluation.

Why these ideas have been ignored for years?

- ► Lack of general software to apply these methods as a black optimisation boxes of for experimental design.
- Reduced scalability in dimensions, number of evaluations (parallelisation) and available models.

Usable BO: GPyOpt

http://sheffieldml.github.io/GPyOpt/

- ► Easy python interface (compatible with spearmint).
- ▶ Based on GPy: GPs, Sparse GPs, Warped GPs, Deep GPs, etc.
- ► MCMC integration of the acquisition functions.
- Parallel (synchronous batch) optimisation.
- ► Constrain optimisation.
- Armed bandits optimisation.
- Handles continous and discrete inputs.
- Several acquisition optimisers.
- More to come!

Open source code (BSD-3 license). You can contribute!

Scalable BO: Parallel/batch BO

Avoiding the bottleneck of evaluating f

- ► Cost of $f(\mathbf{x}_n) = \text{cost of } \{f(\mathbf{x}_{n,1}), \dots, f(\mathbf{x}_{n,nb})\}.$
- ► Many cores available, simultaneous lab experiments, etc.

Considerations when designing a batch

- ▶ Available pairs $\{(\mathbf{x}_j, y_i)\}_{i=1}^n$ are augmented with the evaluations of f on $\mathcal{B}_t^{h_b} = \{\mathbf{x}_{t,1}, \dots, \mathbf{x}_{t,nb}\}.$
- ▶ Goal: design $\mathcal{B}_1^{n_b}, \ldots, \mathcal{B}_m^{n_b}$.

Notation:

- ▶ I_n : data set $\mathcal{D}_n + \mathcal{GP}$ structure ($I_{t,k}$ in the batch context).
- $\alpha(\mathbf{x}; \mathcal{I}_n)$: generic acquisition function given \mathcal{I}_n .

Optimal greedy batch design

Design a batch optimally is intractable

Sequential policy: Maximise:

$$\alpha(\mathbf{x}; \mathcal{I}_{t,k-1})$$

Greedy batch policy, k-th element t-th batch: Maximize:

$$\int \alpha(\mathbf{x}; \boldsymbol{I}_{t,k-1}) \prod_{j=1}^{k-1} p(y_{t,j}|\mathbf{x}_{t,j}, \boldsymbol{I}_{t,j-1}) p(\mathbf{x}_{t,j}|\boldsymbol{I}_{t,j-1}) d\mathbf{x}_{t,j} dy_{t,j}$$

- ▶ $p(y_{t,j}|\mathbf{x}_{t,j}, \mathbf{I}_{t,j-1})$: predictive distribution of the \mathcal{GP} .

Available approaches

[Azimi et al., 2010; Desautels et al., 2012; Chevalier et al., 2013; Contal et al. 2013]

Bottleneck

Available methods require to iteratively update $p(y_{t,j}|\mathbf{x}_j, I_{t,j-1})$ to model the iteration between the elements in the batch: $O(n^3)$

How to design batches reducing this cost? Local penalisation

Lipschitz continuity

$$|f(\mathbf{x}_1) - f(\mathbf{x}_2)| \le L||\mathbf{x}_1 - \mathbf{x}_2||_p.$$

Interpretation of the Lipschitz continuity of *f*

 $M = \max_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$ and $B_{r_{x_i}}(\mathbf{x}_j) = {\mathbf{x} \in \mathcal{X} : ||\mathbf{x} - \mathbf{x}_j|| \le r_{x_j}}$ where

$$r_{x_j} = \frac{M - f(\mathbf{x}_j)}{L}$$

 $x_M \notin B_{r_{x_i}}(\mathbf{x}_j)$ otherwise, the Lipschitz condition is violated.

Probabilistic version of $B_{r_x}(\mathbf{x})$ We can do this because $f(\mathbf{x}) \sim \mathcal{GP}(\mu(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$

•
$$r_{x_j}$$
 is Gaussian with $\mu(r_{x_j}) = \frac{M - \mu(\mathbf{x}_j)}{L}$ and $\sigma^2(r_{x_j}) = \frac{\sigma^2(\mathbf{x}_j)}{L^2}$.

Local penalisers: $\varphi(\mathbf{x}; \mathbf{x}_j) = p(\mathbf{x} \notin B_{r_{\mathbf{x}_j}}(\mathbf{x}_j))$

$$\varphi(\mathbf{x}; \mathbf{x}_j) = p(r_{\mathbf{x}_j} < ||\mathbf{x} - \mathbf{x}_j||)$$

$$= 0.5 \operatorname{erfc}(-z)$$
where $z = \frac{1}{\sqrt{2\sigma_n^2(\mathbf{x}_j)}} (L||\mathbf{x}_j - \mathbf{x}|| - M + \mu_n(\mathbf{x}_j)).$

- ► Reflects the size of the 'Lipschitz' exclusion areas.
- ▶ Approaches to 1 when x is far form x_j and decreases otherwise.

Idea to collect the batches

Without using explicitly the model.

Optimal batch: maximisation-marginalisation

$$\int \alpha(\mathbf{x}; \mathcal{I}_{t,k-1}) \prod_{j=1}^{k-1} p(y_{t,j}|\mathbf{x}_{t,j}, \mathcal{I}_{t,j-1}) p(\mathbf{x}_{t,j}|\mathcal{I}_{t,j-1}) d\mathbf{x}_{t,j} dy_{t,j}$$

Proposal: maximisation-penalisation.

Use the $\varphi(x; x_j)$ *to penalise the acquisition and predict the expected change in* $\alpha(x; \mathcal{I}_{t,k-1})$.

Local penalisation strategy

[González, Dai, Hennig, Lawrence, 2016]

The maximization-penalisation strategy selects $\mathbf{x}_{t,k}$ as

$$\mathbf{x}_{t,k} = \arg\max_{x \in \mathcal{X}} \left\{ g(\alpha(\mathbf{x}; \mathcal{I}_{t,0})) \prod_{j=1}^{k-1} \varphi(\mathbf{x}; \mathbf{x}_{t,j}) \right\},\,$$

g is a transformation of $\alpha(\mathbf{x}; \mathcal{I}_{t,0})$ to make it always positive.

L controls the exploration-exploitation balance within the batch.

L controls the exploration-exploitation balance within the batch.

L controls the exploration-exploitation balance within the batch.

L controls the exploration-exploitation balance within the batch. We choose $\hat{L} = \max_{\mathcal{X}} \|\mu_{\nabla}(\mathbf{x}^*)\|$.

2D experiment with 'large domain'

Comparison in terms of the wall clock time

Optimisation of a fitted model for gene design

70 dimensions (gene features), emulator of the protein production by cells.

Support Vector Regression

- ► Minimisation of the RMSE on a test set over 3 parameters.
- 'Physiochemical' properties of protein tertiary structure?
- ▶ 45730 instances and 9 continuous attributes.

Wrapping up

- BO is fantastic tool for global parameter optimisation in ML and experimental design.
- To parallelise BO requires modelling the interaction between the elements in the batches to design. This can be done without updating the model explicitly after each batch element is collected.
- ► Software available! Use GPyOpt!