
Scalable (and usable!) Bayesian Optimisation

Javier González
(with Zhenwen Dai, Philipp Hennig and Neil Lawrence)

University of Sheffield, Sheffield, UK

April 7th, 2016. SIAM-UQ, Lausanne, Switzerland.

General goal of the talk

“Civilisation advances by extending the
number of important operations which

we can perform without thinking of them.”
(Alfred North Whitehead)

I Scalable BO: models + parallelisation.
I Usable BO: new users + expert users.

General framework: global optimisation

Consider a well behaved function f : X → R where X ⊆ RD is (in
principle) a bounded domain.

xM = arg min
x∈X

f (x).

I f is explicitly unknown (computer model, process
embodied in a physical process) and multimodal.

I Evaluations of f may be perturbed.
I Evaluations of f are (very) expensive.

Expensive functions, who doesn’t have one?
[Dai, Damianou, González and Lawrence, ICLR’2016]
[González et al. NIPS-ComBio 2014, 2015]

Model configuration: find learning rates, number of layers, etc

Design of experiments: Design synthetic genes that best
enable cells to scale up the production of proteins of interest.

Probabilistic numerics approach?
http://www.probabilistic-numerics.org/, Michael Osborne, Philipp Hennig

Make a series of x1, . . . , xN evaluations of f to minimise
cumulative regret

rN =

N∑
n=1

f (xn) −N f (xM)

1. Optimisation as decision: Minimise the regret.

2. Decision as inference: need to model the epistemic
uncertainty we have about f .

Probability theory to model uncertainty

Bayesian Optimisation
[Mockus, 1978]

Methodology to perform global optimisation of multimodal
black-box functions.

1. Choose some prior measure over the space of possible
objectives f .

2. Combine prior and the likelihood to get a posterior measure
over the objective given some observations.

3. Use the posterior to decide where to take the next
evaluation according to some acquisition/loss function.

4. Augment the data.

Iterate between 2 and 4 until the evaluation budget is over.

Probability measure over functions
Gaussian processes [Rasmunsen and Williams, 2006]

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.

I Fully determined by a covariance function k(x, x′;θ)
operator.

I Marginals are Gaussians with known mean and variance.

Probability measure over functions
Gaussian processes [Rasmunsen and Williams, 2006]

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.

I Fully determined by a covariance function k(x, x′;θ)
operator.

I Marginals are Gaussians with known mean and variance.

Expected Improvement
[Jones et al, 1998]

αEI(x;θ,D) , E[max(0, ybest − y)]

Exploration vs. exploitation to determine the next evaluation.

Illustration of BO

Iteration 1

Illustration of BO

Iteration 2

Illustration of BO

Iteration 3

Illustration of BO

Iteration 4

Illustration of BO

Iteration 5

Illustration of BO

Iteration 6

Illustration of BO

Iteration 8

Illustration of BO

Iteration 8

Why these ideas have been ignored for years?

I Lack of general software to apply these methods as a black
optimisation boxes of for experimental design.

I Reduced scalability in dimensions, number of evaluations
(parallelisation) and available models.

Usable BO: GPyOpt
http://sheffieldml.github.io/GPyOpt/

I Easy python interface (compatible with spearmint).
I Based on GPy: GPs, Sparse GPs, Warped GPs, Deep GPs,

etc.
I MCMC integration of the acquisition functions.
I Parallel (synchronous batch) optimisation.
I Constrain optimisation.
I Armed bandits optimisation.
I Handles continous and discrete inputs.
I Several acquisition optimisers.
I More to come!

Open source code (BSD-3 license). You can contribute!

Scalable BO: Parallel/batch BO
Avoiding the bottleneck of evaluating f

I Cost of f (xn) = cost of { f (xn,1), . . . , f (xn,nb)}.
I Many cores available, simultaneous lab experiments, etc.

Considerations when designing a batch

I Available pairs {(x j, yi)}ni=1 are augmented with the
evaluations of f on Bnb

t = {xt,1, . . . , xt,nb}.

I Goal: design Bnb
1 , . . . ,B

nb
m .

Notation:

I In: data setDn + GP structure (It,k in the batch context).

I α(x;In): generic acquisition function given In.

Optimal greedy batch design
Design a batch optimally is intractable

Sequential policy: Maximise:

α(x;It,k−1)

Greedy batch policy, k-th element t-th batch: Maximize:∫
α(x;It,k−1)

k−1∏
j=1

p(yt, j|xt, j,It, j−1)p(xt, j|It, j−1)dxt, jdyt, j

I p(yt, j|xt, j,It, j−1): predictive distribution of the GP.
I p(x j|It, j−1) = δ(xt, j − arg maxx∈X α(x;It, j−1)).

Available approaches
[Azimi et al., 2010; Desautels et al., 2012; Chevalier et al., 2013; Contal et al. 2013]

Bottleneck

Available methods require to iteratively update p(yt, j|x j,It, j−1)
to model the iteration between the elements in the batch: O(n3)

How to design batches reducing this cost? Local penalisation

Lipschitz continuity

| f (x1) − f (x2)| ≤ L‖x1 − x2‖p.

Interpretation of the Lipschitz continuity of f

M = maxx∈X f (x) and Brxj
(x j) = {x ∈ X : ‖x − x j‖ ≤ rx j}where

rx j =
M − f (x j)

L

0.4 0.6 0.8 1.0 1.2
x

30

20

10

0

10

20

f(x
)

True function
Samples
Exclusion cones
Active regions

xM < Brxj
(x j) otherwise, the Lipschitz condition is violated.

Probabilistic version of Brx(x)
We can do this because f (x) ∼ GP(µ(x), k(x, x′))

I rx j is Gaussian with µ(rx j) =
M−µ(x j)

L and σ2(rx j) =
σ2(x j)

L2 .

Local penalisers: ϕ(x; x j) = p(x < Brx j
(x j))

ϕ(x; x j) = p(rx j < ‖x − x j‖)
= 0.5erfc(−z)

where z = 1√
2σ2

n(x j)
(L‖x j − x‖ −M + µn(x j)).

I Reflects the size of the ‘Lipschitz’ exclusion areas.
I Approaches to 1 when x is far form x j and decreases

otherwise.

Idea to collect the batches
Without using explicitly the model.

Optimal batch: maximisation-marginalisation∫
α(x;It,k−1)

k−1∏
j=1

p(yt, j|xt, j,It, j−1)p(xt, j|It, j−1)dxt, jdyt, j

Proposal: maximisation-penalisation.

Use the ϕ(x; x j) to penalise the acquisition and predict the expected
change in α(x;It,k−1).

Local penalisation strategy
[González, Dai, Hennig, Lawrence, 2016]

10 5 0 5 10
x

0

1

2

3

4

5

6

7

8

9

va
lu

e

1st batch element
α(x)

10 5 0 5 10
x

0

1

2

3

4

5

6

7

8

9

va
lu

e

2nd batch element
α(x)

α(x)ϕ1 (x)

ϕ1 (x)

10 5 0 5 10
x

0

1

2

3

4

5

6

7

8

9

va
lu

e

3th batch element
α(x)ϕ1 (x)

α(x)ϕ1 (x)ϕ2 (x)

ϕ2 (x)

The maximization-penalisation strategy selects xt,k as

xt,k = arg max
x∈X

g(α(x;It,0))
k−1∏
j=1

ϕ(x; xt, j)

 ,
g is a transformation of α(x;It,0) to make it always positive.

Example for L = 50

L controls the exploration-exploitation balance within the batch.

Example for L = 100

L controls the exploration-exploitation balance within the batch.

Example for L = 150

L controls the exploration-exploitation balance within the batch.

Example for L = 250

L controls the exploration-exploitation balance within the batch.
We choose L̂ = maxX ‖µ∇(x∗)‖.

2D experiment with ‘large domain’

Comparison in terms of the wall clock time

0 50 100 150 200 250 300

Time(seconds)

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

B
e
st

 f
o
u
n
d
 v

a
lu

e

EI

UCB

Rand-EI

Rand-UCB

SM-UCB

B-UCB

PE-UCB

Pred-EI

Pred-UCB

qEI

LP-EI

LP-UCB

Optimisation of a fitted model for gene design

70 dimensions (gene features), emulator of the protein
production by cells.

0 200 400 600 800 1000 1200

Time(seconds)

5.066

5.064

5.062

5.060

5.058

5.056

5.054

5.052

5.050

B
e
st

 f
o
u
n
d
 v

a
lu

e

EI

UCB

Rand-EI

Rand-UCB

SM-UCB

B-UCB

PE-UCB

Pred-EI

Pred-UCB

LP-EI

LP-UCB

Support Vector Regression

I Minimisation of the RMSE on a test set over 3 parameters.
I ’Physiochemical’ properties of protein tertiary structure?
I 45730 instances and 9 continuous attributes.

0 500 1000 1500 2000 2500 3000 3500

Time(seconds)

5.860

5.865

5.870

5.875

5.880

5.885

5.890

B
e
st

 f
o
u
n
d
 v

a
lu

e EI

UCB

Rand-EI

Rand-UCB

Pred-EI

Pred-UCB

LP-EI

LP-UCB

Wrapping up

I BO is fantastic tool for global parameter optimisation in
ML and experimental design.

I To parallelise BO requires modelling the interaction
between the elements in the batches to design. This can be
done without updating the model explicitly after each
batch element is collected.

I Software available! Use GPyOpt!

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	0.41:
	0.42:
	0.43:
	0.44:
	0.45:
	0.46:
	0.47:
	0.48:
	0.49:
	0.50:
	0.51:
	0.52:
	0.53:
	0.54:
	0.55:
	0.56:
	0.57:
	0.58:
	0.59:
	0.60:
	0.61:
	0.62:
	0.63:
	0.64:
	0.65:
	0.66:
	0.67:
	0.68:
	0.69:
	0.70:
	0.71:
	0.72:
	0.73:
	0.74:
	0.75:
	0.76:
	0.77:
	0.78:
	0.79:
	0.80:
	0.81:
	0.82:
	0.83:
	0.84:
	0.85:
	0.86:
	0.87:
	0.88:
	0.89:
	0.90:
	0.91:
	0.92:
	0.93:
	0.94:
	0.95:
	0.96:
	0.97:
	0.98:
	0.99:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	1.30:
	1.31:
	1.32:
	1.33:
	1.34:
	1.35:
	1.36:
	1.37:
	1.38:
	1.39:
	1.40:
	1.41:
	1.42:
	1.43:
	1.44:
	1.45:
	1.46:
	1.47:
	1.48:
	1.49:
	1.50:
	1.51:
	1.52:
	1.53:
	1.54:
	1.55:
	1.56:
	1.57:
	1.58:
	1.59:
	1.60:
	1.61:
	1.62:
	1.63:
	1.64:
	1.65:
	1.66:
	1.67:
	1.68:
	1.69:
	1.70:
	1.71:
	1.72:
	1.73:
	1.74:
	1.75:
	1.76:
	1.77:
	1.78:
	1.79:
	1.80:
	1.81:
	1.82:
	1.83:
	1.84:
	1.85:
	1.86:
	1.87:
	1.88:
	1.89:
	1.90:
	1.91:
	1.92:
	1.93:
	1.94:
	1.95:
	1.96:
	1.97:
	1.98:
	1.99:
	anm1:

