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General goal of the talk

“Civilization advances by extending the
number of important operations which

we can perform without thinking of them.”
(Alfred North Whitehead)

I To configure statistical/ML models automatically.
I To automatically design sequential experiments to

optimize physical processes.



General framework: global optimization

Consider a well behaved function f : X → R where X ⊆ RD is (in
principle) a bounded domain.

xM = arg min
x∈X

f (x).

I f is explicitly unknown (computer model, process
embodied in a physical process) and multimodal.

I Evaluations of f may be perturbed.
I Evaluations of f are (very) expensive.



Expensive functions, who doesn’t have one?
[González, Lonworth, James and Lawrence, 2014, 2015]

Design of experiments: gene optimization

I Use mammalian cells to make protein products.
I Control the ability of the cell-factory to use synthetic DNA.

Optimize genes (ATTGGTUGA...) to best enable the
cell-factory to operate most efficiently.



Regret minimization

Random of grid search require many function evaluations.

The goal is to make a series of x1, . . . , xN evaluations of f such
that the cumulative regret

rN =

N∑
n=1

f (xn) −N f (xM)

is minimized.

rN is minimized if we start evaluating f at xM as soon as
possible.



Probabilistic numerics approach
http://www.probabilistic-numerics.org/

1. Minimize the regret implies to see an optimization problem
as a decision problem.

2. Decision problems can be seen as inference: need to model
the epistemic uncertainty we have about the system we are
studying.

Probability theory to model uncertainty



Bayesian Optimization
[Mockus, 1978]

Methodology to perform global optimization of multimodal
black-box functions.

1. Choose some prior measure over the space of possible
objectives f .

2. Combine prior and the likelihood to get a posterior over the
objective given some observations.

3. Use the posterior to decide where to take the next
evaluation according to some acquisition/loss function.

4. Augment the data.

Iterate between 2 and 4 until the evaluation budget is over.



Probability measure over functions
Gaussian processes [Rasmunsen and Williams, 2006]

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.
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Probability measure over functions
Gaussian processes [Rasmunsen and Williams, 2006]

I GP is fully determined by a covariance function k(x, x′;θ)
operator.

I Regression problems: yi = f (xi) + εi.

I Marginals at any x∗ are Gaussians with mean and variance

µ(x∗|θ,D) = kθ(X∗)>[kθ + σ2I]−1y

σ2(x∗|θ,D) = kθ(x∗, x∗) − kθ(x∗)>[Kθ + σ2I]−1kθ(x∗)

whereD is available dataset.



Acquisition functions
Making use of the model uncertainty

GPs has marginal closed-form for the posterior mean µ(x∗) and
variance σ2(x∗).

I Exploration: Evaluate in places where the variance is
large.

I Exploitation: Evaluate in places where the mean is low.

Acquisition functions balance these two factors to determine
where to evaluate next.



Expected improvement
[Jones at al., 1998]

αEI(x;θ,D) =

∫
y

max(0, ybest − y)p(y|x;θ,D)dy



Bayesian Optimization
As a ’mapping’ between two problems

BO is an strategy to transform the problem

xM = arg min
x∈X

f (x)
unsolvable!

into a series of problems:

xn+1 = arg max
x∈X

α(x;Dn, θn)
solvable!

where now:

I α(x) is inexpensive to evaluate.
I The gradients of α(x) are typically available.
I Still need to find xn+1: gradient descent, DIRECT or other

heuristics.



Illustration of BO
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Why these ideas have been ignored for years?

I BO depends on its own (model) parameters.

I Reduced scalability in dimensions and number of
evaluations.

I Lack of software to apply these methods as a black
optimization boxes.



Open Software: GPyOpt
http://sheffieldml.github.io/GPyOpt/



Open Software: GPyOpt
http://sheffieldml.github.io/GPyOpt/

I Easy python interface (compatible with spearmint).
I Surrogate models available: GPs, sparse GPs, deep GPs,

etc.
I MCMC integration of the acquisition functions.
I Parallel (synchronous batch) optimization.
I Constrain optimization.
I Handles continous and discrete inputs.
I More to come!

Open source code. You can contribute!



Scalable BO: Parallel/batch BO
Avoiding the bottleneck of evaluating f

I Cost of f (xn) = cost of { f (xn,1), . . . , f (xn,nb)}.
I Many cores available, simultaneous lab experiments, etc.



Considerations when designing a batch

I Available pairs {(x j, yi)}ni=1 are augmented with the
evaluations of f on Bnb

t = {xt,1, . . . , xt,nb}.

I Goal: design Bnb
1 , . . . ,B

nb
m .

Notation:

I In: represents the available data setDn and the GP
structure when n data points are available (It,k in the batch
context).

I α(x;In): generic acquisition function given In.



Optimal greedy batch design

Sequential policy: Maximize:

α(x;It,0)

Greedy batch policy, 1st element t-th batch: Maximize:
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Optimal greedy batch design

Sequential policy: Maximize:

α(x;It,0)

Greedy batch policy, 2nd element t-th batch: Maximize:∫
α(x;It,1)p(yt,1|xt,1,It,0)p(xt,1|It,0)dxt,1dyt,1

I p(yt,1|x1,It,0): predictive distribution of the GP.
I p(x1|It,0) = δ(xt,1 − arg maxx∈X α(x;It,0)).



Optimal greedy batch design

Sequential policy: Maximize:

α(x;It,k−1)

Greedy batch policy, k-th element t-th batch: Maximize:∫
α(x;It,k−1)

k−1∏
j=1

p(yt, j|xt, j,It, j−1)p(xt, j|It, j−1)dxt, jdyt, j

I p(yt, j|xt, j,It, j−1): predictive distribution of the GP.
I p(x j|It, j−1) = δ(xt, j − arg maxx∈X α(x;It, j−1)).



Available approaches
[Azimi et al., 2010; Desautels et al., 2012; Chevalier et al., 2013; Contal et al. 2013]

I Exploratory approaches, reduction in system uncertainty.
I Generate ‘fake’ observations of f using p(yt, j|x j,It, j−1).
I Simultaneously optimize elements on the batch using the

joint distribution of yt1 , . . . yt,nb.

Bottleneck

All these methods require to iteratively update p(yt, j|x j,It, j−1)
to model the iteration between the elements in the batch: O(n3)

How to design batches reducing this cost? Local penalization



Goal: eliminate the marginalization step

“To develop an heuristic approximating the ’optimal batch design
strategy’ at lower computational cost, while incorporating

information about global properties of f from the GP model into the
batch design”

Lipschitz continuity:

| f (x1) − f (x2)| ≤ L‖x1 − x2‖p.



Interpretation of the Lipschitz continuity of f

M = maxx∈X f (x) and Brxj
(x j) = {x ∈ X : ‖x − x j‖ ≤ rx j}where

rx j =
M − f (x j)
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Probabilistic version of Brx(x)
We can do this because f (x) ∼ GP(µ(x), k(x, x′))

I rx j is Gaussian with µ(rx j) =
M−µ(x j)

L and σ2(rx j) =
σ2(x j)

L2 .

Local penalizers: ϕ(x; x j) = p(x < Brx j
(x j))

ϕ(x; x j) = p(rx j < ‖x − x j‖)
= 0.5erfc(−z)

where z = 1√
2σ2

n(x j)
(L‖x j − x‖ −M + µn(x j)).

I Reflects the size of the ’Lipschitz’ exclusion areas.
I Approaches to 1 when x is far form x j and decreases

otherwise.
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Idea to collect the batches
Without using explicitly the model.

Optimal batch: maximization-marginalization∫
α(x;It,k−1)

k−1∏
j=1

p(yt, j|xt, j,It, j−1)p(xt, j|It, j−1)dxt, jdyt, j

Proposal: maximization-penalization.

Use the ϕ(x; x j) to penalize the acquisition and predict the expected
change in α(x;It,k−1).



Local penalization strategy
[González, Dai, Hennig, Lawrence, 2016]
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The maximization-penalization strategy selects xt,k as

xt,k = arg max
x∈X

g(α(x;It,0))
k−1∏
j=1

ϕ(x; xt, j)

 ,
g is a transformation of α(x;It,0) to make it always positive.
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Example for L = 50

L controls the exploration-exploitation balance within the batch.



Example for L = 100

L controls the exploration-exploitation balance within the batch.



Example for L = 150

L controls the exploration-exploitation balance within the batch.



Example for L = 250

L controls the exploration-exploitation balance within the batch.



Finding an unique Lipschitz constant

Let f : X → IR be a L-Lipschitz continuous function defined on
a compact subset X ⊆ IRD. Then

Lp = max
x∈X
‖∇ f (x)‖p,

is a valid Lipschitz constant.

The gradient of f at x∗ is distributed as a multivariate Gaussian

∇ f (x∗)|X,y, x∗ ∼ N(µ∇(x∗),Σ2
∇

(x∗))

We choose:
L̂ = max

X

‖µ∇(x∗)‖



Experiments: Sobol function

Best (average) result for some given time budget.



2D experiment with ‘large domain’

Comparison in terms of the wall clock time
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Support Vector Regression

I Minimization of the RMSE on a test set over 3 parameters.
I ’Physiochemical’ properties of protein tertiary structure?
I 45730 instances and 9 continuous attributes.
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Application: Synthetic gene design
[González, Lonworth, James and Lawrence, 2014, 2015]

I Use mammalian cells to make protein products.
I Control the ability of the cell-factory to use synthetic DNA.

Cornerstone of modern biotechnology: Design DNA code that
will best enable the cell-factory to operate most efficiently.

Synthetic gene design



Natural cells vs. cell factories

Central dogma of systems biology

In a natural mammalian cell:

I Not all genes encode proteins of therapeutical interest.
I ’Natural’ genes are not optimized to maximize protein

production.



Natural cells vs. cell factories

Central dogma of systems biology

Current tools in synthetic biology allow to:

I control cell transcription...
I ...but it is unknown how to control cell translation and

mRNA stability.



Key question

Develop a synthetic gene design tool to
control/optimize translation



Why can we rewrite the genetic code?

I Different gene sequences may encode the same protein...
I ...but the sequence affects the synthesis efficiency.
I The codon usage is the key (codon = triplet of bases).

The genetic code is redundant:

ATGUUGACA... = ATGUUGACU...

Both genes encode the same pro-
tein.



Challenges

I Huge and structured design space: gene features
extraction.

I Unknown mechanistic model of the cell behaviour:
multioutput Gaussian processes.

I Expensive and time consuming experiments: Bayesian
Optimization.

I Many experiments can be run in parallel.



Gene features extraction



Model as an emulator of the cell behavior

-Model inputs
Gene features (xi).

-Model outputs
Translation rates and mRNA
half-life f := ( fα, fβ).

-Model: Multi-output GP

f ≈ GP(m,K)

where K = B⊗Kin with ARD.



Bayesian Optimization principles for gene design
[González, Lonworth, James and Lawrence, 2014]

do:

1. Build a GP model as an emulator of the cell behavior.
2. Obtain a set* of gene design rules (features optimization).
3. Design one/many new gene/s coherent with the design

rules.
4. Test genes in the lab (get new data).

until the gene is optimized (or the budget is over...).

*Many sets or rules can be obtained for parallel designs.



Designing new genes coherent with the optimal
design rules

Simulating-matching approach:

1. Simulate genes ‘coherent’ with the target.

2. Extract features.

3. Rank synthetic genes according to their similarity with the
‘optimal’ design rules.

Ranking criterion: eval(s|x?) =
∑p

j=1 w j|x j − x?j |

I x?: optimal gene design rules.
I s, x j generated ‘synonyms sequence’ and its features.
I w j: weights of the p features.



Experiments

I Dataset in Schwanhausser et al. (2011) for 3810 genes rates.
Sequences extracted from
http:wet-labpic/www.ensembl.org.

I 250 features involving 5’UTR, 3’UTR and coding region.

I Gaussian process with ARD and coregionalized outputs.

I Synthetic genes to produce siaP.

I 10,000 random ‘synonyms sequences’ generated from each
gene.

I GPy and GPyOpt (https://github.com/SheffieldML/).



We can evaluate the gene features relevance



The model is able to predict translation rates



Maximizing gene translation

In-silico comparision of different batch methods for parallel
gene design.
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We can use the model to control translation

s half-life CMV mRNA half-lifeCMV mRNA half-life
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Wrapping up

I BO is fantastic tool for global parameter optimization in
ML and experimental design.

I To design a batch to parallelize BO requires modelling the
interaction between the elements in the batch: this can be
done without updating the model explicitly after each
batch element is collected.

I BO is a great tool to design synthetic genes.

I Software available! Come to the tutorial today at 2pm and
use GPyOpt!
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