
Parallel Bayesian optimization with
applications to synthetic gene design

Javier González

University of Sheffield, Sheffield, UK

February 23, 2016. Oxford, UK.

General goal of the talk

“Civilization advances by extending the
number of important operations which

we can perform without thinking of them.”
(Alfred North Whitehead)

I To configure statistical/ML models automatically.
I To automatically design sequential experiments to

optimize physical processes.

General framework: global optimization

Consider a well behaved function f : X → R where X ⊆ RD is (in
principle) a bounded domain.

xM = arg min
x∈X

f (x).

I f is explicitly unknown (computer model, process
embodied in a physical process) and multimodal.

I Evaluations of f may be perturbed.
I Evaluations of f are (very) expensive.

Expensive functions, who doesn’t have one?
[González, Lonworth, James and Lawrence, 2014, 2015]

Design of experiments: gene optimization

I Use mammalian cells to make protein products.
I Control the ability of the cell-factory to use synthetic DNA.

Optimize genes (ATTGGTUGA...) to best enable the
cell-factory to operate most efficiently.

Regret minimization

Random of grid search require many function evaluations.

The goal is to make a series of x1, . . . , xN evaluations of f such
that the cumulative regret

rN =

N∑
n=1

f (xn) −N f (xM)

is minimized.

rN is minimized if we start evaluating f at xM as soon as
possible.

Probabilistic numerics approach
http://www.probabilistic-numerics.org/

1. Minimize the regret implies to see an optimization problem
as a decision problem.

2. Decision problems can be seen as inference: need to model
the epistemic uncertainty we have about the system we are
studying.

Probability theory to model uncertainty

Bayesian Optimization
[Mockus, 1978]

Methodology to perform global optimization of multimodal
black-box functions.

1. Choose some prior measure over the space of possible
objectives f .

2. Combine prior and the likelihood to get a posterior over the
objective given some observations.

3. Use the posterior to decide where to take the next
evaluation according to some acquisition/loss function.

4. Augment the data.

Iterate between 2 and 4 until the evaluation budget is over.

Probability measure over functions
Gaussian processes [Rasmunsen and Williams, 2006]

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.

Probability measure over functions
Gaussian processes [Rasmunsen and Williams, 2006]

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.

Probability measure over functions
Gaussian processes [Rasmunsen and Williams, 2006]

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.

Probability measure over functions
Gaussian processes [Rasmunsen and Williams, 2006]

I GP is fully determined by a covariance function k(x, x′;θ)
operator.

I Regression problems: yi = f (xi) + εi.

I Marginals at any x∗ are Gaussians with mean and variance

µ(x∗|θ,D) = kθ(X∗)>[kθ + σ2I]−1y

σ2(x∗|θ,D) = kθ(x∗, x∗) − kθ(x∗)>[Kθ + σ2I]−1kθ(x∗)

whereD is available dataset.

Acquisition functions
Making use of the model uncertainty

GPs has marginal closed-form for the posterior mean µ(x∗) and
variance σ2(x∗).

I Exploration: Evaluate in places where the variance is
large.

I Exploitation: Evaluate in places where the mean is low.

Acquisition functions balance these two factors to determine
where to evaluate next.

Expected improvement
[Jones at al., 1998]

αEI(x;θ,D) =

∫
y

max(0, ybest − y)p(y|x;θ,D)dy

Bayesian Optimization
As a ’mapping’ between two problems

BO is an strategy to transform the problem

xM = arg min
x∈X

f (x)
unsolvable!

into a series of problems:

xn+1 = arg max
x∈X

α(x;Dn, θn)
solvable!

where now:

I α(x) is inexpensive to evaluate.
I The gradients of α(x) are typically available.
I Still need to find xn+1: gradient descent, DIRECT or other

heuristics.

Illustration of BO

Illustration of BO

Illustration of BO

Illustration of BO

Illustration of BO

Illustration of BO

Illustration of BO

Illustration of BO

Why these ideas have been ignored for years?

I BO depends on its own (model) parameters.

I Reduced scalability in dimensions and number of
evaluations.

I Lack of software to apply these methods as a black
optimization boxes.

Open Software: GPyOpt
http://sheffieldml.github.io/GPyOpt/

Open Software: GPyOpt
http://sheffieldml.github.io/GPyOpt/

I Easy python interface (compatible with spearmint).
I Surrogate models available: GPs, sparse GPs, deep GPs,

etc.
I MCMC integration of the acquisition functions.
I Parallel (synchronous batch) optimization.
I Constrain optimization.
I Handles continous and discrete inputs.
I More to come!

Open source code. You can contribute!

Scalable BO: Parallel/batch BO
Avoiding the bottleneck of evaluating f

I Cost of f (xn) = cost of { f (xn,1), . . . , f (xn,nb)}.
I Many cores available, simultaneous lab experiments, etc.

Considerations when designing a batch

I Available pairs {(x j, yi)}ni=1 are augmented with the
evaluations of f on Bnb

t = {xt,1, . . . , xt,nb}.

I Goal: design Bnb
1 , . . . ,B

nb
m .

Notation:

I In: represents the available data setDn and the GP
structure when n data points are available (It,k in the batch
context).

I α(x;In): generic acquisition function given In.

Optimal greedy batch design

Sequential policy: Maximize:

α(x;It,0)

Greedy batch policy, 1st element t-th batch: Maximize:

α(x;It,0)

Optimal greedy batch design

Sequential policy: Maximize:

α(x;It,0)

Greedy batch policy, 1st element t-th batch: Maximize:

α(x;It,0)

Optimal greedy batch design

Sequential policy: Maximize:

α(x;It,0)

Greedy batch policy, 2nd element t-th batch: Maximize:∫
α(x;It,1)p(yt,1|xt,1,It,0)p(xt,1|It,0)dxt,1dyt,1

I p(yt,1|x1,It,0): predictive distribution of the GP.
I p(x1|It,0) = δ(xt,1 − arg maxx∈X α(x;It,0)).

Optimal greedy batch design

Sequential policy: Maximize:

α(x;It,k−1)

Greedy batch policy, k-th element t-th batch: Maximize:∫
α(x;It,k−1)

k−1∏
j=1

p(yt, j|xt, j,It, j−1)p(xt, j|It, j−1)dxt, jdyt, j

I p(yt, j|xt, j,It, j−1): predictive distribution of the GP.
I p(x j|It, j−1) = δ(xt, j − arg maxx∈X α(x;It, j−1)).

Available approaches
[Azimi et al., 2010; Desautels et al., 2012; Chevalier et al., 2013; Contal et al. 2013]

I Exploratory approaches, reduction in system uncertainty.
I Generate ‘fake’ observations of f using p(yt, j|x j,It, j−1).
I Simultaneously optimize elements on the batch using the

joint distribution of yt1 , . . . yt,nb.

Bottleneck

All these methods require to iteratively update p(yt, j|x j,It, j−1)
to model the iteration between the elements in the batch: O(n3)

How to design batches reducing this cost? Local penalization

Goal: eliminate the marginalization step

“To develop an heuristic approximating the ’optimal batch design
strategy’ at lower computational cost, while incorporating

information about global properties of f from the GP model into the
batch design”

Lipschitz continuity:

| f (x1) − f (x2)| ≤ L‖x1 − x2‖p.

Interpretation of the Lipschitz continuity of f

M = maxx∈X f (x) and Brxj
(x j) = {x ∈ X : ‖x − x j‖ ≤ rx j}where

rx j =
M − f (x j)

L

0.4 0.6 0.8 1.0 1.2
x

30

20

10

0

10

20

f(x
)

True function
Samples
Exclusion cones
Active regions

xM < Brxj
(x j) otherwise, the Lipschitz condition is violated.

Probabilistic version of Brx(x)
We can do this because f (x) ∼ GP(µ(x), k(x, x′))

I rx j is Gaussian with µ(rx j) =
M−µ(x j)

L and σ2(rx j) =
σ2(x j)

L2 .

Local penalizers: ϕ(x; x j) = p(x < Brx j
(x j))

ϕ(x; x j) = p(rx j < ‖x − x j‖)
= 0.5erfc(−z)

where z = 1√
2σ2

n(x j)
(L‖x j − x‖ −M + µn(x j)).

I Reflects the size of the ’Lipschitz’ exclusion areas.
I Approaches to 1 when x is far form x j and decreases

otherwise.

Probabilistic version of Brx(x)
We can do this because f (x) ∼ GP(µ(x), k(x, x′))

I rx j is Gaussian with µ(rx j) =
M−µ(x j)

L and σ2(rx j) =
σ2(x j)

L2 .

Local penalizers: ϕ(x; x j) = p(x < Brx j
(x j))

ϕ(x; x j) = p(rx j < ‖x − x j‖)
= 0.5erfc(−z)

where z = 1√
2σ2

n(x j)
(L‖x j − x‖ −M + µn(x j)).

I Reflects the size of the ’Lipschitz’ exclusion areas.
I Approaches to 1 when x is far form x j and decreases

otherwise.

Idea to collect the batches
Without using explicitly the model.

Optimal batch: maximization-marginalization∫
α(x;It,k−1)

k−1∏
j=1

p(yt, j|xt, j,It, j−1)p(xt, j|It, j−1)dxt, jdyt, j

Proposal: maximization-penalization.

Use the ϕ(x; x j) to penalize the acquisition and predict the expected
change in α(x;It,k−1).

Local penalization strategy
[González, Dai, Hennig, Lawrence, 2016]

10 5 0 5 10
x

0

1

2

3

4

5

6

7

8

9

va
lu

e

1st batch element
α(x)

10 5 0 5 10
x

0

1

2

3

4

5

6

7

8

9

va
lu

e

2nd batch element
α(x)

α(x)ϕ1 (x)

ϕ1 (x)

10 5 0 5 10
x

0

1

2

3

4

5

6

7

8

9

va
lu

e

3th batch element
α(x)ϕ1 (x)

α(x)ϕ1 (x)ϕ2 (x)

ϕ2 (x)

The maximization-penalization strategy selects xt,k as

xt,k = arg max
x∈X

g(α(x;It,0))
k−1∏
j=1

ϕ(x; xt, j)

 ,
g is a transformation of α(x;It,0) to make it always positive.

Local penalization strategy
[González, Dai, Hennig, Lawrence, 2016]

10 5 0 5 10
x

0

1

2

3

4

5

6

7

8

9

va
lu

e

1st batch element
α(x)

10 5 0 5 10
x

0

1

2

3

4

5

6

7

8

9

va
lu

e

2nd batch element
α(x)

α(x)ϕ1 (x)

ϕ1 (x)

10 5 0 5 10
x

0

1

2

3

4

5

6

7

8

9

va
lu

e

3th batch element
α(x)ϕ1 (x)

α(x)ϕ1 (x)ϕ2 (x)

ϕ2 (x)

The maximization-penalization strategy selects xt,k as

xt,k = arg max
x∈X

g(α(x;It,0))
k−1∏
j=1

ϕ(x; xt, j)

 ,
g is a transformation of α(x;It,0) to make it always positive.

Example for L = 50

L controls the exploration-exploitation balance within the batch.

Example for L = 100

L controls the exploration-exploitation balance within the batch.

Example for L = 150

L controls the exploration-exploitation balance within the batch.

Example for L = 250

L controls the exploration-exploitation balance within the batch.

Finding an unique Lipschitz constant

Let f : X → IR be a L-Lipschitz continuous function defined on
a compact subset X ⊆ IRD. Then

Lp = max
x∈X
‖∇ f (x)‖p,

is a valid Lipschitz constant.

The gradient of f at x∗ is distributed as a multivariate Gaussian

∇ f (x∗)|X,y, x∗ ∼ N(µ∇(x∗),Σ2
∇

(x∗))

We choose:
L̂ = max

X

‖µ∇(x∗)‖

Experiments: Sobol function

Best (average) result for some given time budget.

2D experiment with ‘large domain’

Comparison in terms of the wall clock time

0 50 100 150 200 250 300

Time(seconds)

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

B
e
st

 f
o
u
n
d
 v

a
lu

e

EI

UCB

Rand-EI

Rand-UCB

SM-UCB

B-UCB

PE-UCB

Pred-EI

Pred-UCB

qEI

LP-EI

LP-UCB

Support Vector Regression

I Minimization of the RMSE on a test set over 3 parameters.
I ’Physiochemical’ properties of protein tertiary structure?
I 45730 instances and 9 continuous attributes.

0 500 1000 1500 2000 2500 3000 3500

Time(seconds)

5.860

5.865

5.870

5.875

5.880

5.885

5.890

B
e
st

 f
o
u
n
d
 v

a
lu

e EI

UCB

Rand-EI

Rand-UCB

Pred-EI

Pred-UCB

LP-EI

LP-UCB

Application: Synthetic gene design
[González, Lonworth, James and Lawrence, 2014, 2015]

I Use mammalian cells to make protein products.
I Control the ability of the cell-factory to use synthetic DNA.

Cornerstone of modern biotechnology: Design DNA code that
will best enable the cell-factory to operate most efficiently.

Synthetic gene design

Natural cells vs. cell factories

Central dogma of systems biology

In a natural mammalian cell:

I Not all genes encode proteins of therapeutical interest.
I ’Natural’ genes are not optimized to maximize protein

production.

Natural cells vs. cell factories

Central dogma of systems biology

Current tools in synthetic biology allow to:

I control cell transcription...
I ...but it is unknown how to control cell translation and

mRNA stability.

Key question

Develop a synthetic gene design tool to
control/optimize translation

Why can we rewrite the genetic code?

I Different gene sequences may encode the same protein...
I ...but the sequence affects the synthesis efficiency.
I The codon usage is the key (codon = triplet of bases).

The genetic code is redundant:

ATGUUGACA... = ATGUUGACU...

Both genes encode the same pro-
tein.

Challenges

I Huge and structured design space: gene features
extraction.

I Unknown mechanistic model of the cell behaviour:
multioutput Gaussian processes.

I Expensive and time consuming experiments: Bayesian
Optimization.

I Many experiments can be run in parallel.

Gene features extraction

Model as an emulator of the cell behavior

-Model inputs
Gene features (xi).

-Model outputs
Translation rates and mRNA
half-life f := (fα, fβ).

-Model: Multi-output GP

f ≈ GP(m,K)

where K = B⊗Kin with ARD.

Bayesian Optimization principles for gene design
[González, Lonworth, James and Lawrence, 2014]

do:

1. Build a GP model as an emulator of the cell behavior.
2. Obtain a set* of gene design rules (features optimization).
3. Design one/many new gene/s coherent with the design

rules.
4. Test genes in the lab (get new data).

until the gene is optimized (or the budget is over...).

*Many sets or rules can be obtained for parallel designs.

Designing new genes coherent with the optimal
design rules

Simulating-matching approach:

1. Simulate genes ‘coherent’ with the target.

2. Extract features.

3. Rank synthetic genes according to their similarity with the
‘optimal’ design rules.

Ranking criterion: eval(s|x?) =
∑p

j=1 w j|x j − x?j |

I x?: optimal gene design rules.
I s, x j generated ‘synonyms sequence’ and its features.
I w j: weights of the p features.

Experiments

I Dataset in Schwanhausser et al. (2011) for 3810 genes rates.
Sequences extracted from
http:wet-labpic/www.ensembl.org.

I 250 features involving 5’UTR, 3’UTR and coding region.

I Gaussian process with ARD and coregionalized outputs.

I Synthetic genes to produce siaP.

I 10,000 random ‘synonyms sequences’ generated from each
gene.

I GPy and GPyOpt (https://github.com/SheffieldML/).

We can evaluate the gene features relevance

The model is able to predict translation rates

Maximizing gene translation

In-silico comparision of different batch methods for parallel
gene design.

0 200 400 600 800 1000 1200

Time(seconds)

5.066

5.064

5.062

5.060

5.058

5.056

5.054

5.052

5.050

B
e
st

 f
o
u
n
d
 v

a
lu

e

EI

UCB

Rand-EI

Rand-UCB

SM-UCB

B-UCB

PE-UCB

Pred-EI

Pred-UCB

LP-EI

LP-UCB

We can use the model to control translation

s half-life CMV mRNA half-lifeCMV mRNA half-life

0 2000 4000 6000 8000 10000

Gene design

4

5

6

7

8

9

10

T
ra

n
sl

a
ti

o
n
 r

a
te

 (
lo

g
2

)

CMV - mRNA translation

Average prediction

1*stevd

Wild type

Ranking of 10,000 recombinant simulate sequences for the
average translation rates and mRNA half-life.

Wrapping up

I BO is fantastic tool for global parameter optimization in
ML and experimental design.

I To design a batch to parallelize BO requires modelling the
interaction between the elements in the batch: this can be
done without updating the model explicitly after each
batch element is collected.

I BO is a great tool to design synthetic genes.

I Software available! Come to the tutorial today at 2pm and
use GPyOpt!

Many thanks to

I Michael Osborne, University of Oxford.
I Neil Lawrence, University of Sheffield.
I Zhenwen Dai, University of Sheffield.
I Philipp Hennig, Max Planck institute.
I Andreas Damianou, University of Sheffield.
I David James, Joseph Longworth and others at CBE,

University of Sheffield.

